Taschen und Rucksäcke bedrucken mit Logo, Slogan, Werbung oder gravieren und besticken mit individueller Werbeanbringung

Button-Zum Shop- hier finden Sie diverse Werbeartikel in verschiedenen Formen, Farben.

Unsere Produkte
Archiv

Button-Zum Shop- hier finden Sie diverse Werbeartikel in verschiedenen Formen, Farben.

Button-Zum Shop- hier finden Sie diverse Werbeartikel in verschiedenen Formen, Farben.

Pins on Pinterest
  • Mousepads - auch mit einem QR Code veredelbar, als Werbeartikel, Werbemittel, Werbegeschenke.

  • Entwerfen Sie Ihren eigenen Springwürfel in bunten Farben - als Werbeartikel, Werbemittel, Werbegeschenke -

  • Follow Me on Pinterest

Werbeprodukt

Glaswaren individuell gestaltbar

Glas
aus Wikipedia, der freien Enzyklopädie

Glas (von germanisch glasa „das Glänzende, Schimmernde“, auch für „Bernstein“) ist ein amorpher, nichtkristalliner Feststoff. Materialien, die man im Alltagsleben als Glas bezeichnet (zum Beispiel Trink- und Fenstergläser, Fernsehscheiben und Glühlampen) sind nur ein Ausschnitt aus der Vielfalt der Gläser.

Inhaltsverzeichnis

  • 1 Definition
  • 2 Eigenschaften
    • 2.1 Struktur
    • 2.2 Übergang von der Schmelze zum festen Glas
  • 3 Einstellung der Glaseigenschaften
  • 4 Glasfärbung und Entfärbung
  • 5 Einteilung der Gläser
  • 6 Produktionsprozess
    • 6.1 Gemenge
    • 6.2 Schmelze
    • 6.3 Formgebung
    • 6.4 Kühlung
    • 6.5 Oberflächen-Veredelung
  • 7 Geschichte der Glasherstellung
    • 7.1 Frühzeit und Antike
    • 7.2 Mittelalter und Neuzeit
      • 7.2.1 Waldglas
      • 7.2.2 Venedig
      • 7.2.3 Glasperlen
      • 7.2.4 Fensterglas
    • 7.3 Industrialisierung und Automatisierung
      • 7.3.1 Flachglas
      • 7.3.2 Hohlglas
      • 7.3.3 Rohrglas

Definition

Glas ist eine amorphe Substanz. Gewöhnlich wird Glas durch Schmelzen erzeugt, die Bildung von Glas ist aber auch durch die Erwärmung von Sol-Gel und durch Stoßwellen möglich. Thermodynamisch wird Glas als gefrorene, unterkühlte Flüssigkeit bezeichnet. Diese Definition gilt für alle Substanzen, die geschmolzen und entsprechend schnell abgekühlt werden. Das bedeutet, dass sich bei der Erstarrung der Schmelze zum Glas zwar Kristallkeime bilden, für den Kristallisationsprozess jedoch nicht genügend Zeit verbleibt. Das erstarrende Glas ist zu schnell fest, um noch eine Kristallbildung zu erlauben. Der Transformationsbereich, das ist der Übergangsbereich zwischen Schmelze und Feststoff, liegt bei vielen Glasarten um 600 °C.

Trotz des nicht definierten Schmelzpunkts sind Gläser Festkörper, allerdings werden sie in der Fachterminologie als „nicht-ergodisch“ bezeichnet, d. h. sie befinden sich im Gegensatz zu anderen Systemen nicht im „thermodynamischen Gleichgewicht“. Aber obwohl sich Glas unter langzeitiger Krafteinwirkung verformt, darf man es auch nicht als Flüssigkeit bezeichnen. Die langsame Verformung unter einer konstanten Kraft tritt auch in kristallinen Festkörpern auf und wird als Kriechen bezeichnet. Während aber in Kristallen diese Kriechprozesse auf Gitterfehler (z. B. Versetzungen) zurückgehen, treten diese gerade in Gläsern nicht auf. Berichte von fließenden Kirchenfenstern lassen sich nicht bestätigen und die Idee des flüssigen Glases scheint auf eine Falschübersetzung zurückzugehen, obwohl die Glasbildung mit dem Überschreiten extremer Zähigkeitswerte beim sogenannten „Abschrecken“ gewisser glasbildender Legierungen einhergeht.

Kunststoffe wie Plexiglas fallen wegen ihrer thermodynamischen Eigenschaften (amorpher Aufbau, Glasübergang usw.) ebenfalls in die Kategorie Gläser, obwohl sie eine völlig andere chemische Zusammensetzung aufweisen als Silikatgläser. Sie werden daher oft als organisches Glas bezeichnet.

Die im allgemeinen Sprachgebrauch bedeutungstragende Eigenschaft von Glas ist die optische Durchsichtigkeit. Die optischen Eigenschaften sind so vielfältig wie die Anzahl der Gläser. Neben klaren Gläsern, die in einem breiten Band für Licht durchlässig sind, kann man durch Zugabe von speziellen Materialien zur Schmelze die Durchlässigkeit blockieren. Zum Beispiel kann man optisch klare Gläser für infrarotes Licht undurchdringbar machen, die Wärmestrahlung ist blockiert. Die bekannteste Steuerung der Durchlässigkeit ist die Färbung. Die verschiedensten Farben können erzielt werden. Andererseits gibt es undurchsichtiges Glas, das schon aufgrund seiner Hauptkomponenten oder der Zugabe von Trübungsmitteln opak ist.

Gebrauchsglas hat eine Dichte von ca. 2500 kg/m³ (Kalk-Natronglas). Die mechanischen Eigenschaften variieren sehr stark. Die Zerbrechlichkeit von Glas ist sprichwörtlich. Die Bruchfestigkeit wird stark von der Qualität der Oberfläche bestimmt. Glas ist weitgehend resistent gegen Chemikalien. Eine Ausnahme ist Flusssäure; sie löst das Siliciumdioxid und wandelt es zu Hexafluorokieselsäure. Bei Raumtemperatur hat Glas einen hohen elektrischen Widerstand, der allerdings mit steigender Temperatur stark abfällt, sofern es sich nicht um Quarzglas (glasartig erstarrtes reines Siliciumdioxid) handelt. Neben den Silikatgläsern gibt es aber auch sog. metallische Gläser wie Fe80B20, die bereits bei Raumtemperatur höhere Leitfähigkeiten besitzen, weil sie sich ungefähr wie eingefrorene flüssige Metalle verhalten.

Eigenschaften

Struktur

Obwohl Glas zu den ältesten Werkstoffen der Menschheit gehört, besteht noch Unklarheit in vielen Fragen des atomaren Aufbaus und seiner Struktur. Die mittlerweile allgemein anerkannte Deutung der Struktur ist die Netzwerkhypothese, die von Zachariasen 1932 aufgestellt wurde. Diese besagt, dass im Glas grundsätzlich dieselben Bindungszustände wie im Kristall vorliegen. Bei silikatischen Gläsern also in Form von SiO4-Tetraedern.

Wie die zweidimensionalen Abbildungen des Quarzes und des Quarzglases zeigen, liegt der Unterschied in der Regelmäßigkeit des Gefüges – hier Gitter und dort ein Netzwerk. Die vierte Oxidbindung, die in die dritte Dimension zeigt, ist zur besseren Anschaulichkeit nicht dargestellt. Die Bindungswinkel und Abstände im Glas sind nicht regelmäßig und die Tetraeder sind verzerrt. Der Vergleich zeigt, dass Glas ausschließlich über eine Nahordnung in Form der Tetraeder verfügt, jedoch keine kristalline Fernordnung aufweist. Diese fehlende Fernordnung ist auch verantwortlich für die sehr schwierige Analyse der Glasstruktur. Insbesondere die Analyse in mittlerer Reichweite, also die Verbindungen mehrerer Grundformen (hier den Tetraedern), ist Gegenstand der aktuellen Forschung und wird zu den heutigen größten Problemen der Physik gezählt.

Das Material, das diese Grundstruktur des Glases bestimmt, nennt man Netzwerkbildner. Neben dem erwähnten Siliciumoxid können auch andere Stoffe Netzwerkbildner sein, wie Bortrioxid und nichtoxidische wie Arsensulfid. Einkomponentengläser sind eine Ausnahme; sie neigen auch im Laufe der Zeit eher zur Kristallisation als Mehrkomponentengläser. Das trifft auch auf reines Quarzglas zu, was als einziges Einkomponentenglas wirtschaftliche Bedeutung hat.

Weitere Stoffe binden sich anders in das Netzwerkgefüge ein. Hier werden Netzwerkwandler und Stabilisatoren unterschieden.

Netzwerkwandler werden in das vom Netzwerkbildner gebildete Gerüst eingebaut. Für gewöhnliches Gebrauchsglas – Kalk-Alkali-Glas (gebräuchlicher ist allerdings der engere Terminus Kalk-Natron-Glas) – sind dies Natrium- bzw. Kaliumoxid und Calciumoxid. Diese Netzwerkwandler reißen die Netzwerkstruktur auf. Dabei werden Bindungen des Brückensauerstoffs in den Siliciumoxid-Tetraedern aufgebrochen. Anstelle der Atombindung mit dem Silicium geht der Sauerstoff eine Ionenbindung mit einem Alkaliatom ein.

Zwischenoxide wie Aluminiumoxid und Bleioxid können als Netzwerkbildner und -wandler fungieren. Allerdings sind sie alleine nicht zur Glasbildung fähig.

Übergang von der Schmelze zum festen Glas

Während bei kristallinen Materialien der Übergang von der Schmelze zum Kristall bei einer bestimmten Temperatur spontan erfolgt, geht dieser Vorgang bei Gläsern allmählich vonstatten. Hier spricht man daher nicht von einem Schmelzpunkt sondern von einem Transformationsbereich. Im Laufe der Abkühlung nimmt die Viskosität des Materials stark zu. Dies ist das äußere Zeichen für eine zunehmende innere Struktur. Da diese Struktur kein regelmäßiges Muster aufweist, nennt man den Zustand der Schmelze im Transformationsbereich, wie auch des erstarrten Glases, amorph. Am kühlen Ende des Transformationsbereichs liegt ein thermodynamischer Übergang, der für Glas charakteristisch ist und daher den Namen Glasübergang trägt. An ihm wandelt sich die Schmelze in den festen, glasartigen Zustand, den das Glas auch bei weiterer Abkühlung beibehält. Der Glasübergang zeichnet sich durch eine sprunghafte Änderung des Wärmeausdehnungskoeffizienten sowie eine Abnahme der spezifischen Wärme Cp aus.

Diese Abfolge von Transformationsbereich und Glasübergang ist charakteristisch für alle Gläser, auch solchen, die wie Plexiglas aus Kohlenwasserstoffen bestehen. Der amorphe, viskose Zustand der Schmelze im Transformationsbereich wird für die Bearbeitung von Glas durch Glasbläserei ausgenutzt. Er erlaubt eine beliebige Verformung, ohne dass Oberflächenspannung und Gravitation das Werkstück sofort zerfließen lassen.

Einstellung der Glaseigenschaften

Glaseigenschaften können mittels statistischer Analyse von Glas-Datenbanken wie z. B. von SciGlass® oder Interglad® ermittelt und optimiert werden. Sofern die gewünschte Glaseigenschaft nicht mit Kristallisation (z. B. Liquidustemperatur) oder Phasentrennung in Zusammenhang steht, ist einfache lineare Regressionsanalyse anwendbar, unter Zuhilfenahme algebraischer Gleichungen der ersten bis zur dritten Ordnung.

Die nachstehende Gleichung zweiter Ordnung ist ein Beispiel, wobei C die Konzentrationen der Glaskomponenten wie Na2O oder CaO darstellen. Die b-Werte sind variable Koeffizienten, und n ist die Anzahl aller Glaskomponenten. Der Glas-Hauptbestandteil SiO2 ist in der dargestellten Gleichung ausgeschlossen und wird mit der Konstante bo berücksichtigt. Der Großteil der Glieder in der Beispielgleichung kann aufgrund von Korrelations- und Signifikanzanalyse vernachlässigt werden. Weitere Einzelheiten und Anwendungen siehe.

\mbox{Glaseigenschaft} = b_0 + \sum_{i=1}^n \left( b_\mathrm{i}C_\mathrm{i} + \sum_{k=i}^n b_\mathrm{ik}C_iC_\mathrm{k} \right)

Oft ist es erforderlich, mehrere Glaseigenschaften sowie die Produktionskosten gleichzeitig zu optimieren. Dies geschieht mit der Methode der kleinsten Quadrate, wodurch der Abstand zwischen den gewünschten Eigenschaften und den vorausberechneten einer fiktiven Glassorte durch Variation der Zusammensetzung minimiert wird. Es ist möglich, die gewünschten Eigenschaften unterschiedlich zu wichten. [5]

Zusammensetzungen wichtiger Gläser (Angaben in Gewichtsprozent)
Glasart SiO2 Al2O3 Na2O K2O MgO CaO B2O3 PbO TiO2 F As Se Ge Te
Quarzglas 100
Kalk-Natron-Glas 72 2 14 10
Floatglas 72 1,5 13,5 3,5 8,5
Bleikristallglas 58 - 4 9 2 24
Borosilikatglas 80 3 4 0,5 12,5
E-Glas 54 14 4,5 17,5 10
Email 40 1,5 9 6 1 - 10 4 15 13
Chalkogenidglas 1 12 55 33
Chalkogenidglas 2 13 32 30 25

Glas-Zuschlagstoffe sind unter anderem:

  • andere Flussmittel zur Herabsetzung des Schmelzpunkts
    • Zinkoxid
    • Thallium
  • zur Veränderung der Brechzahl
    • Bariumoxid
    • Bleioxid (absorbiert auch Strahlung)
  • Trübungsmittel
    • Zinndioxid
    • Calciumphosphat
    • Fluorid für Opalglas
    • Zirkoniumdioxid
  • Cer wird für Glas verwendet, das Infrarotstrahlung absorbiert
  • Boroxid als Zusatz verändert die thermischen und elektrischen Eigenschaften
  • Aluminiumoxid erhöht die Bruchfestigkeit

Glasfärbung und Entfärbung

Die meisten Glassorten werden mit weiteren Zusatzstoffen produziert, um bestimmte Eigenschaften, wie ihre Färbung zu beeinflussen. Zur Glasfärbung erfolgt die Beimischung von Metallen in Form von Nanopartikeln, (rund 0,1 %) in die Glasschmelze. Die am häufigsten verwendeten Metalle sind Gold und Silber in einer Korngröße von einigen Nanometern. Weiterhin entscheidend ist die Form der Partikel, z. B. prolat (platt), sphärisch oder oblat (abgeflacht). Die unterschiedlichen Farben bei Reflexion bzw. Transmission werden durch die Nanopartikel beeinflusst.

Für die Entfärbung von Gläsern, die durch Verunreinigungen ihrer Rohstoffe verursacht sind, werden vor allem Metalloxide verwendet. Grundsätzlich verwendet man zur Beseitigung von Farbstichen die komplementäre Farbe. Entfärbemittel wurden Glasmacherseifen genannt.

  • Eisenoxide: Färben je nach Wertigkeit des Eisenions grün-blaugrün oder gelb und in Verbindung mit Braunstein gelb sowie braun-schwarz.
  • Kupferoxide: zweiwertiges Kupfer färbt blau, einwertiges färbt rot, daraus ergibt sich das Kupferrubinglas.
  • Chromoxid: Wird in Verbindung mit Eisenoxid oder allein für die Grünfärbung verwendet.
  • Uranoxid: Ergibt eine sehr feine Gelb- oder Grünfärbung (Annagelbglas- oder Annagrünglas) mit grüner Fluoreszenz unter UV-Licht. Solche Gläser wurden vor allem in der Zeit des Jugendstils hergestellt. In England und Amerika ist diese Glassorte auch als uranium glass oder vaseline glass bekannt. Aufgrund der Radioaktivität des Urans wird es heutzutage nicht mehr verwendet.
  • Cobalt(II,III)-oxid: färbt intensiv blau und wird auch für die Entfärbung verwendet. Eine weitere Cobaltverbindung, die Glas blau färbt, ist das Cobaltaluminat Thénards Blau.
  • Nickeloxid: violett, rötlich; auch für die Graufärbung und zur Entfärbung.
  • Mangan(IV)-oxid (Braunstein) als Glasmacherseife zur Entfernung des Grünstichs (durch Absorption der Komplementärfarben).
  • Selenoxid: färbt rosa und rot, die rosa Färbung wird als Rosalin bezeichnet, während die rote als Selenrubin bezeichnet wird.
  • Silber: ergibt feines Silbergelb;
  • Indiumoxid: gelb bis bernsteinorange;
  • Neodym: rosa bis purpur, lila;
  • Praseodym: grün;
  • Samarium: gelb;
  • Europium: intensiv rosa;
  • Gold: Wird erst in Königswasser aufgelöst und färbt rubinrot, eine der teuersten Glasfärbungen Goldpurpur.

Einteilung der Gläser

Nach Art der Genese
Neben künstlichen finden sich auch natürliche Gläser: Obsidian und Bimsstein sind vulkanischen Ursprungs, Impaktgläser und Tektite entstehen durch Meteoriteneinschlag, Fulgurite bei Blitzeinschlag, Trinitit durch Atombombenexplosion und der Friktionit Köfelsit durch Bergstürze. Diese Gläser entstehen aus dem Schmelzen von Sanden. Ein Kristallgitter kann auch durch Einwirkung einer Schockwelle seine Struktur verlieren und ein amorpher Körper werden. Zu diesem diaplektischen Glas zählt Maskelynit, das aus Feldspat entstanden ist. Auch ist es möglich, mit Hilfe des Sol-Gel-Prozesses Glas ohne Schmelzen herzustellen. Ein Beispiel hierzu sind Silikat-Aerogele.
Nach Art des „Chemismus“
Neben Kalk-Natron-Glas, das dem gewöhnlichen Gebrauchsglas entspricht, gibt es Quarzglas aus reinem Siliciumdioxid, Bleiglas für z. B. Kristalltrinkgläser, Fernsehtrichter und optische Linsen. Das Blei im Glas schirmt die elektromagnetische Strahlung ab, hat eine hohe Brechzahl und eine gleichmäßige Dispersion. Wasserglas ist wasserlöslich. Borosilikatglas ist insbesondere chemisch resistent und wird bei Laborgeräten und Kochgeschirren, aber auch für optische Gläser verwendet. Borphosphatglas (Bortrioxid, Phosphorpentoxid) und Alumosilikatgläser sind weitere Spezialgläser. Zu der Gruppe der nichtoxidischen Gläser gehören unter anderem Fluoridgläser und Chalkogenidgläser in der Infrarotoptik. Als Sonderfall in dieser Einordnung muss man Glaskeramik begreifen. Es wird als Glas produziert, durch die Wärmenachbehandlung wird teilweise Rekristallisierung erzielt. So ist es streng genommen kein Glas mehr, sondern ein Glas-Kristall-Mischkörper.
Nach der Grundform des Produkts und dem Produktionsverfahren
Die Glasindustrie wird gewöhnlich in Hohlglas-, Flachglas-, und Spezialglasherstellung gegliedert. Hohlglas bezeichnet Flaschen und Konservengläser. Diese Massenprodukte werden maschinell geblasen. Höherwertige Produkte werden gepresst. Hierzu gehören Glasbausteine und Trinkgläser. Für Glühlampen ist ein besonderes Produktionsverfahren notwendig, ebenso für Rohrglas. Flachglas wird je nach Produktionsverfahren Floatglas oder Walzglas genannt. Das Grundprodukt ist eine Glasscheibe. Endprodukte sind z. B. Automobilglas, Spiegel, Temperglas, Verbundglas. Faserglas umfasst Glasfaserkabel, Glaswolle und findet auch Anwendung bei glasfaserverstärkten Kunststoffen. Optische Gläser sind Linsen für Mikroskope und Ferngläser. Mundgeblasene Gläser existieren praktisch nur noch im Kunstgewerbe, sowie bei kostspieligen Vasen und Weingläsern.
Nach ihren hergebrachten Handelsnamen
Antikglas, Diatretglas, Flintglas (Bleiglas als optisches Glas), Hyalithglas (opakes Glas, im 19. Jahrhundert benutzt für Tafel- und Pharmaglas), Kronglas (optisches Glas), Kryolithglas (opakes, weißes Fluoridglas).
Nach ihren Markennamen als Gattungsbegriff
Ceran (Glaskeramik für z. B. Kochfelder), Jenaer Glas (hitzefestes Borosilikatglas) beide von Schott und Pyrex (Borosilikatglas) von Corning im angelsächsischen Sprachraum ein Synonym zu Jenaer Glas.

Produktionsprozess

Gemenge

Für die Herstellung von Kalk-Natron-Glas, das ca. 90 % der produzierten Glasmenge ausmacht, werden folgende Rohstoffe eingesetzt:

  • Quarzsand als fast reiner SiO2-Träger zur Netzwerkbildung. Wichtig ist, dass der Sand nur einen geringen Anteil an Fe2O3 besitzen darf (<0,05 %), da sonst bei Weißglas störende Grünfärbungen auftreten.
  • Natriumcarbonat (Mineral: Natrit – wasserfreie Soda; Na2CO3) dient als Natriumoxidträger, das als Netzwerkwandler und als Flussmittel dient und den Schmelzpunkt des SiO2 senkt. In der Schmelze wird Kohlenstoffdioxid frei und löst sich als Gas aus dem Glas. Natrium kann der Schmelze auch als Nitrat oder Sulfat zugeführt werden (Natriumsulfat ist Läutermittel zur Reduzierung des Blasengehaltes).
  • Pottasche (K2CO3) liefert Kaliumoxid für die Schmelze, das wie Natriumoxid als Netzwerkwandler und Flussmittel dient.
  • Feldspat (NaAlSi3O8) trägt neben SiO2 und Na2O Tonerde (Al2O3) in das Gemenge ein. Diese führt zu einer Erhöhung der chemischen Beständigkeit gegenüber Wasser, Nahrungsmitteln und Umwelteinflüssen.
  • Kalk dient als Netzwerkwandler. Bei der Schmelze wandelt es sich zu Kohlendioxid und Calciumoxid. CaO erhöht in mäßiger Zugabe (10–15 %) die Härte und chemische Beständigkeit.
  • Dolomit ist ein Träger für CaO und MgO. Magnesiumoxid wirkt auf die Schmelze ähnlich wie Calciumoxid. Ein zu hoher MgO-Gehalt im Glas kann jedoch die Liquidustemperatur unerwünscht erhöhen.
  • Altglas oder Eigenscherben aus dem Produktionsbruch werden ebenfalls dem Gemenge wiederaufgegeben – Altglas aus dem Glasrecycling allerdings nur in der Behälterglasindustrie, wo ihr Anteil bis über 90 % betragen kann. Neben eingespartem Rohstoff macht sich dieses im geringeren Energieverbrauch bemerkbar, da Scherben leichter schmelzen als das Gemenge. Probleme beim Altglasrecycling sind eine schlechte Farbtrennung, Fremdbestandteile wie Metalle, Keramik oder Spezialgläser. Die Fremdstoffe verursachen Glasfehler durch nicht vollständiges Aufschmelzen und Schäden in der Glasschmelzwanne, da sich Metalle in den feuerfesten Boden einfressen.

Für Spezialgläser kommen auch Mennige, Borax, Bariumcarbonat und seltene Erden zum Einsatz.

Schmelze

Die Glasschmelze erfolgt in verschiedenen Phasen: Sie beginnt mit der Rauhschmelze, die das Erschmelzen des Gemenges und seine Homogenisierung umfasst. Danach kommt die Läuterung, in der die Gase ausgetrieben werden. Daran schließt sich das Abstehen des Glases an, in der das Material zur weiteren Formgebung abgekühlt wird.

Bei chargenweise arbeitenden Tageswannen und Hafenöfen geschehen alle diese Schritte nacheinander in demselben Becken. Dieses historische Produktionsverfahren findet heute nur noch bei kunsthandwerklicher Produktion und speziellen, optischen Gläsern in geringen Mengen statt. Im industriellen Maßstab finden ausschließlich kontinuierlich arbeitende Öfen Verwendung. Hier ist die Abfolge obiger Schritte nicht zeitlich, sondern räumlich getrennt. Die Menge des zugeführten Gemenges muss der der Glasentnahme entsprechen.

Das Gemenge wird der Schmelzwanne mit einer Einlegemaschine aufgegeben. Bei Temperaturen von ca. 1480 °C schmelzen die verschiedenen Bestandteile langsam. Die Bewegung der Konvektion im Glasbad erzeugt Homogenität. Diese kann durch ein Bubbling, der Eindüsung von Luft oder Gasen in die Schmelze, unterstützt werden.

Im Läuterbereich, der dem Schmelzbereich unmittelbar folgt und häufiger auch durch einen Wall in der Schmelze von diesem getrennt ist, werden in der Schmelze verbliebene Blasen ausgetrieben. Durch die hohe Zähigkeit der Schmelze geschieht dieses nur sehr allmählich, und es sind ebenso hohe Temperaturen erforderlich wie im Schmelzbereich. Da die Läuterung bestimmend für die Glasqualität ist, gibt es vielfältige unterstützende Maßnahmen.

Dem Läuterbereich schließt sich die baulich klar getrennte Arbeitswanne an. Da für die Formgebung niedrigere Temperaturen als zur Schmelze und Läuterung nötig sind, muss das Glas vorher abstehen. Daher spricht man auch von Abstehwanne. Der Kanal, der Schmelzwanne und Arbeitswanne verbindet, heißt Durchfluss und arbeitet nach dem Siphonprinzip. Bei Flachglaswannen sind Schmelz- und Arbeitswanne nur durch eine Einschnürung getrennt, da ein Durchfluss eine optische Unruhe im Fertigprodukt entstehen ließe.

Von der Arbeitswanne fließt das Glas weiter zum Punkt der Entnahme. Bei der Produktion von Hohlglas sind dieses die Speiser oder Feeder. Hier werden Tropfen in darunter stehende Glasmaschinen geleitet. Bei Flachglas fließt das Glas über die Lippe in das Floatbad.

Formgebung

Je nach Produkt wird Glas unterschiedlich geformt. Dabei unterscheidet man vor allem Gläser, die gepresst, geblasen, gedüst, gesponnen oder gewalzt werden.

  • Hohlglas wird in mehreren Verfahren durch Pressen, Blasen, Saugen und Kombinationen dieser Techniken hergestellt. Hier dominiert die IS-Maschine, die im Blas-Blas- oder Press-Blas-Verfahren arbeitet. Für höherwertige Tafelware kommen Press-Blas-Verfahren zum Einsatz, die karussellförmig arbeiten.
  • Glasfasern werden durch Spinnen im so genannten TEL-Verfahren produziert.
  • Flachglas wird im Floatverfahren hergestellt, gezogen, gewalzt oder gegossen.
  • Rohrglas wird seit 1912 durch kontinuierliche Ziehverfahren hergestellt.

Kühlung

In jedem Glasgegenstand entstehen bei der Formgebung mechanische Spannungen als Folge von Dehnungsunterschieden im Material. Diese Spannungen lassen sich mit optischen Spannungsprüfern messen (Spannungsdoppelbrechung). Die Spannungsanfälligkeit hängt vom Ausdehnungskoeffizienten des jeweiligen Glases ab und muss thermisch ausgeglichen werden.

Für jedes Glas lässt sich zwischen der oberen Kühltemperatur (Viskosität von 1013 dPa·s) und einer unteren Kühltemperatur (1014,5 dPa·s), in der Regel zwischen 590 °C und 450 °C, ein Kühlbereich festlegen. Die Spannungen verringert man durch definiertes langsames Abkühlen im Kühlbereich, dem Tempern.

Die Zeit, in der ein Glasgegenstand den Kühlbereich durchlaufen kann, ist maßgeblich von der je nach Glasart zu überbrückenden Temperatur und der Stärke (Dicke) des Gegenstands abhängig. Im Hohlglasbereich sind dies zwischen 30 min und 100 min, bei großen optischen Linsen mit 1 m Durchmesser und mehr, kann eine langsame Abkühlung von einem Jahr notwendig sein, um sichtbare Spannungen und somit Bildverzeichnungen der Linse zu vermeiden.

Die kontrollierte Temperatursenkung kann mit unterschiedlichen Öfen vorgenommen werden. Man unterscheidet periodische Kühlöfen und kontinuierliche Kühlbahnen. Kühlöfen eignen sich nur für Sonderfertigungen und Kleinstchargen, da nach jeder Entnahme der Werkstücke der Ofen wieder auf Temperatur gebracht werden muss. Industriell werden Kühlbahnen genutzt. Hier wird die Produktion auf Stahlmatten (Hohlglas) bzw. Rollen (Flachglas) langsam durch abgestuft geheizte Ofensegmente transportiert.

Oberflächen-Veredelung

  • Durch chemische und physikalische Gasphasenabscheidung können feinste Metallbeschichtungen aufgebracht werden. Die meisten Fenster- und Autogläser werden auf diese Weise mit für Infrarotlicht undurchlässigen Beschichtungen versehen. Die Wärmestrahlung wird reflektiert und Innenräume heizen durch Sonneneinstrahlung weniger auf. Gleichzeitig werden die Wärmeverluste im Winter reduziert, ohne dabei die Durchsichtigkeit wesentlich zu beeinträchtigen.
  • Die Beschichtung mit dielektrischem Material, das selbst durchsichtig ist, aber ein vom Glasträger abweichende Brechzahl aufweist, ermöglicht sowohl Verspiegelungen als auch eine Entspiegelung. Dies wird bei der Herstellung von Brillengläsern und Linsen für Fotoapparate eingesetzt, um störende Reflexionen zu vermindern. Für wissenschaftliche Zwecke werden Schichten hergestellt, die mehr als 99,9999 % des einfallenden Lichts einer bestimmten Wellenlänge reflektieren. Umgekehrt kann auch erreicht werden, dass 99,999 % des Lichts die Oberfläche passieren.
  • Durch Sandstrahlen oder mit Flusssäure kann die Oberfläche so weit aufgeraut werden, dass das Licht stark gestreut wird. Es erscheint dann milchig und nicht mehr durchsichtig, jedoch wird weiterhin nur sehr wenig Licht absorbiert. Daher wird diese Technik häufig für Lampenschirme oder blickdichte Fenster angewandt (siehe auch Milchglas).

Geschichte der Glasherstellung

Frühzeit und Antike

Natürliches Glas wie Obsidian wurde wegen seiner großen Härte und des scharfen Bruchs seit frühester Zeit für Werkzeuge wie Keile, Klingen, Schaber und Bohrer benutzt. Obsidian kann jedoch – anders als künstlich hergestelltes Glas – mit antiken Mitteln nicht geschmolzen oder gefärbt werden.

Ob die Glasherstellung in Mesopotamien, in Ägypten oder an der Levanteküste erfunden wurde, lässt sich nicht mit letzter Gewissheit sagen. Die ältesten regelmäßig auftretenden Glasfunde stammen aus Mesopotamien; ägyptische Quellen deuten für die Anfangsphase der Glasnutzung in Ägypten auf einen Import aus dem Osten hin. Die älteste textliche Erwähnung stammt aus Ugarit und wird auf etwa 1600 v. Chr. datiert. Als älteste Funde gelten die Nuzi-Perlen, das älteste sicher zu datierende Glasgefäß ist ein Kelch, der den Namen des ägyptischen Pharaos Thutmosis III. trägt und um 1450 v. Chr. entstand. Der Kelch befindet sich heute im Staatlichen Museum Ägyptischer Kunst in München.

Glas wurde in Ägypten seit etwa 1400 v. Chr. zu Gefäßen verarbeitet, der Herstellungsort dieses frühesten Glases ist allerdings unbekannt. Die bekannteste Verarbeitungstechnik beruht auf dem Herstellen von Hohlgefäßen durch das Wickeln von erweichten Glasstäbchen um einen porösen Keramikkern, der anschließend herausgekratzt wurde. Die besten Funde hierzu liegen aus den Grabungen von Flinders Petrie aus Amarna vor. Die bislang einzige bekannte bronzezeitliche Glashütte, in der Glas aus seinen Rohstoffen hergestellt wurde, datiert in die Ramessidenzeit und wurde Ende der 1990er Jahre bei Grabungen des Roemer- und Pelizaeus-Museums (Hildesheim) unter der Leitung von Edgar Pusch im östlichen Nil-Delta in Qantir-Piramesse gefunden. Untersuchungen gaben Aufschluss über das Schmelzverfahren. So wurde Quarzgestein zerkleinert, mit sodahaltiger Pflanzenasche vermengt, in einen Krug gefüllt und bei vielleicht 800 °C zu einer Fritte geschmolzen. Diese Fritte wurde nach dem Abkühlen vermutlich zerkleinert und in einer zweiten Schmelze in speziell hergestellten Tiegeln bei 900 bis 1100 °C zu einem 8 bis 10 cm hohen Barren mit 10 bis 14 cm Durchmesser geschmolzen. Das Glas wurde dabei durch Beimischen von Metall-Oxiden schwarz, violett, blau, grün, rot, gelb oder weiß gefärbt. Ein konkreter Zusammenhang von Glasherstellung und Metallgewinnung ist trotz der ähnlichen Temperaturen nicht nachzuweisen. Das gefärbte Rohglas wurde in Barrenform an die weiterverarbeitenden Werkstätten geliefert, die daraus monochrome und polychrome Objekte herstellten. Solche Glasbarren wurden im Schiffswrack von Uluburun nahe dem türkischen Bodrum gefunden, das auf das 14. Jahrhundert v. Chr. datiert ist. Die erste bekannte Rezeptur ist aus der Bibliothek des assyrischen Königs Assurbanipal überliefert, die auf ca. 650 v. Chr. datiert wird: Nimm 60 Teile Sand, 180 Teile Asche aus Meerespflanzen und 5 Teile Kreide und du erhältst Glas. Zu dieser Zeit wurde schon wesentlich mehr Glas verarbeitet, und es entwickelte sich eine neue Glasschmelztechnik.

Plinius der Ältere beschreibt in der Historia naturalis die Herstellung des Glases. Chemische Analysen und Erkenntnisse der experimentellen Archäologie haben Plinius in vielen Fragen bestätigt. Zur Römerzeit wurde Glas mit Flusssand und Natron aus Ägypten geschmolzen. Dieses ägyptische Natron wurde am Wadi Natrun, einem natürlichen Natronsee in Nord-Ägypten, abgebaut und über Alexandria von den Phöniziern in den Mittelmeerraum exportiert. Es enthielt mehr als 40 % Natriumoxid und bis zu 4 % Kalk, war also ein ideales Schmelzmittel. Plinius schreibt weiter von Glassandlagern in Italien, Hispanien und Gallien, aber an keiner dieser Stätten entwickelte sich eine so bedeutende Glasherstellung wie an der palästinischen Küste zwischen Akkon und Tyros sowie in den ägyptischen Glashütten rund um den Wadi Natrun bei Alexandria.

Kaiser Diokletian legte 301 die Preise für eine ganze Reihe von Produkten fest, unter anderem für Rohglas. Unterschieden wurde judaicum und alexandrium, wobei letzteres teurer und wahrscheinlich entfärbtes Glas war. Zu dieser Zeit war die Glasproduktion im Wesentlichen noch immer in Primär- und Sekundärwerkstätten gegliedert. In den Primärwerkstätten wurde in großen Schmelzwannen Rohglas geschmolzen, das dann an die Sekundärwerkstätten geliefert wurde, wo es in Tiegeln eingeschmolzen und verarbeitet wurde. In Bet Eli’ezer im heutigen Israel wurden 17 Glasschmelzwannen freigelegt, die jeweils 2 m × 4 m groß sind. Nachdem das Gemenge in die Wanne eingelegt worden war, wurde der Ofen zugemauert und 10 bis 15 Tage lang befeuert. Acht bis neun Tonnen blaues bzw. grünes Rohglas wurden so in nur einem Arbeitsgang erschmolzen. Nach dem Feuerungsstopp und dem Abkühlen wurde das Gewölbe des Ofens abgetragen, der Glasblock herausgestemmt und das Rohglas zur weiteren Verarbeitung versandt. Ein Schiffswrack aus dem 3. Jahrhundert, das an der südfranzösischen Küste gefunden wurde, hatte mehr als drei Tonnen Rohglas geladen. In Ägypten wurden Rohglashütten gefunden, die bis ins 10. Jahrhundert reichten. Die Ägypter benutzten Antimon zur Entfärbung, konnten also farbloses, durchsichtiges Glas herstellen.

Die Sekundärglashütten waren im ganzen Römischen Reich verbreitet und stellten Hohlglas, Flachglas und Mosaiksteine her. Das Rohglas wurde in einem Tiegel eingeschmolzen und mit der Pfeife im zähflüssigen Zustand aus dem Ofen genommen und verarbeitet. An der Pfeife konnte das Glas aufgeblasen werden, was die Herstellung von größeren Gefäßen und neuen Formen ermöglichte. Wurde bis dahin Glas für Perlen, Parfümfläschchen und für Trinkschalen verwendet, verbreitete sich im Römischen Reich vor allem Behälterglas – im Gegensatz zu den üblichen Ton-, Holz-, Metall- oder Lederbehältnissen ist Glas geschmacksneutral – sowie Karaffen zum Kredenzen und in der Spätantike auch Trinkgläser. Erste Fenstergläser fanden sich in Aix-en-Provence und Herculaneum. Die Funde haben Größen von 45 cm × 44 cm bzw. 80 cm × 80 cm. Allerdings ist über das Herstellungsverfahren nichts bekannt. Das Zylinderblasverfahren und die Gusstechnik werden hier in Betracht gezogen.

Glasarmringe sind eine typische Schmuckform, die neben gläsernen Fingerringen und Ringperlen zur mittleren La-Tène-Zeit im keltischen Mitteleuropa als Frauenschmuck aufkommt und als Grabbeigabe gefunden wird.

Mittelalter und Neuzeit

Im frühen Mittelalter stellten die Germanen überall dort, wo die Römer sich zurückgezogen hatten, Glas her, das nahtlos an die schon germanisierte Spätantike Formensprache anschließt. Man geht heute davon aus, dass für das Fränkische Glas noch vorhandene Römische Gläser recycelt wurden.

Waldglas

Mit „de diversis artibus“ des Benediktinermönches Theophilus Presbyter steht uns erstmals eine längere schriftliche Quelle zur Verfügung, die die Glasherstellung, das Blasen von Flachglas und Hohlglas sowie die Ofentechnologie beschreibt. Theophilus, der wahrscheinlich in Konstantinopel war, vermischte Asche von getrocknetem Buchenholz mit gesiebtem Flusssand im Verhältnis 2:1 und trocknete dieses Gemenge im Ofen unter ständigem Rühren, so dass es nicht schmelzen oder verkleben konnte, einen Tag und eine Nacht. Danach wurde diese Fritte in einen Tiegel gefüllt und in einer Nacht unter starker Hitze zu Glas geschmolzen.

Dieser am Anfang des 12. Jahrhundert wohl in Köln entstandene Text bildet vielleicht die Grundlage für die Kirchenfenster der Gotik und auch für das Waldglas. Die Pflanzenasche mit allen Verunreinigungen lieferte auch einen Teil des Kalks, der für die Herstellung guten Glases nötig war. Um die enorme Menge an Holz, die für die Befeuerung der Öfen und für die Aschegewinnung nötig war, nicht über lange Wege befördern zu müssen, wurden die Glashütten in abgelegenen Waldgebieten angelegt. Diese Waldglashütten stellten überwiegend Glas her, welches durch Eisenoxid (aus verunreinigtem Sand) grünlich verfärbt war.

In Georgius Agricolas „de re metallica“ gibt es eine kurze Beschreibung der Glaskunst. Er hat von 1524 bis 1527 in Venedig gelebt und wohl die Insel Murano besuchen dürfen, was die detaillierten Beschreibungen der Öfen vermuten lassen.

Als Rohstoff sind durchsichtige Steine genannt, also Bergkristall und Weiße Steine, also Marmor, die im Feuer gebrannt und im Pochwerk zerstoßen und in Form von grobem Griss gebracht und danach gesiebt werden. Weiter führt er Kochsalz, Magnetstein und Soda an. Kochsalz und Magnetstein werden von späteren Autoren als unnütz verworfen, Marmor und Soda gab es in Altare und in Mailand; sie sind aber in Deutschland nicht zu erhalten. Einzig eine Andeutung: „salz das aus laugen dargestellt wird“, weist auf ein venezianisches Geheimnis hin.

Die Glasschmelzöfen der Waldglashütten und Venedigs waren Hafenöfen, sie waren aus mit gebrannter Schamotte versetzten Lehmziegeln gemauerte, eiförmige Konstruktionen mit 3 m Durchmesser und bis zu 3 m Höhe. Im unteren Stock lag der Befeuerungsraum mit ein oder zwei halbrunden Öffnungen für den Holzeinwurf. In der Mitte schlugen die Flammen durch eine große runde Öffnung in den zweiten Stock, in dem die Häfen standen. Dieser etwa 1,20 m hohe Raum war rundum mit 20 cm × 20 cm großen Ofentoren versehen, durch die das Gemenge eingelegt und das Glas entnommen werden konnte. Im Obergeschoss, das durch eine kleine Öffnung mit dem Schmelzraum verbunden war, lag der Kühlofen, der nur 400 °C heiß war. Der Kühlofen war mit einer kleinen Öffnung versehen, durch die fertige Werkstücke eingetragen wurden. Am Abend wurde das Loch zwischen Schmelzraum und Kühlraum mit einem Stein verschlossen, sodass das Glas über Nacht abkühlen konnte.

Venedig

Am Anfang der venezianischen Glastradition steht wohl der Handel mit byzantinischen Glaserzeugnissen, die schon im 10. Jahrhundert importiert und nach ganz Europa exportiert wurden. Erste Glasmacher finden sich in den Registern des 11. Jahrhundert Sie werden „phiolarius“, Flaschenmacher genannt. Ein an der Südküste der Türkei havariertes Handelsschiff, das um 1025 gesunken ist, transportierte nicht weniger als drei Tonnen Rohglas, das aus Caesarea in Palästina stammte. Ob es für Venedig bestimmt war, lässt sich nicht mit Gewissheit sagen, ist aber naheliegend. Bis 1295 werden alle Glasmacher auf der Insel Murano angesiedelt und ihre Reisefreiheit per Gesetz eingeschränkt. Auf dieser von der Welt abgeschnittenen Insel konnte Angelo Barovier, der Mitte des 15. Jahrhundert lebte, das Geheimnis der Glasentfärbung lüften und erstmals ungetrübtes, klar durchsichtiges Glas in Europa herstellen. Das „crystallo“, ein Soda-Kalkglas, das mit Manganoxid entfärbt war, sollte den Weltruhm des venezianischen Glases begründen. Die Soda wurde aus der Levante oder Alexandria importiert, ausgelaugt und versiedet, bis ein reines Salz entstand. Als Sand wurde ein reiner Glassand aus dem Ticino oder gebrannter Marmor verwendet. Eine weitere venezianische Wiederentdeckung ist das „lattimo“ (Milchglas), ein opakes weißes Glas, das mit Zinndioxid und Knochenasche getrübt war, und das chinesische Porzellan nachahmte.

Glasperlen

Die Glasperlen wurden zu einer begehrten Handelsware und breiteten sich schnell über ganz Europa aus. Über Jahrhunderte waren Glasperlen ein beliebtes Zahlungsmittel im Tauschhandel mit Gold, Elfenbein, Seide und Gewürzen. Seit einigen Jahren sind die bunten Kunstwerke begehrte Objekte für Sammler.

Glasperlen aus Venedig sind die bekanntesten und begehrtesten Perlen der Welt. Venezianische Glaskünstler haben während mehrerer Jahrhunderte Perlenhersteller auf der ganzen Welt beeinflusst. Dort werden die Glasperlen über offener Flamme hergestellt. Es ist ein sehr zeitaufwendiges Verfahren, da jede Perle einzeln gefertigt wird.

Ein Glasstab wird unter der Verwendung einer Lötlampe bis zum Schmelzen erhitzt und um einen Metallstab gewickelt, bis die gewünschte Perlenform erreicht wird. Auf diese Grundperle können nach und nach weitere Glasfarben aufgeschmolzen werden und unterschiedliche Dekorationselemente, wie dünne Glasfäden oder hauchdünne Glasplättchen (Confettis), aufgebracht werden. Dann wird die Perle sehr langsam abgekühlt und von der Stange entfernt, wodurch ein Loch entsteht, durch das die Perle später aufgefädelt werden kann. Diese Perlen nennt man Wickelperlen.

Fensterglas

Wie in archäologischen Museen regelmäßig gezeigt wird, war im Römischen Reich bei den Villen der Oberschicht ab dem 1.Jh. Fensterverglasung üblich. Meist handelte es sich um in Guss-Bügel-Technik erzeugte rechteckige Platten von ca. 20 x 30 cm. Butzenglasscheiben des 4.Jh werden im Museo Archeologico von Aquileia (Italien) gezeigt. Im 9. Jahrhundert wiesen St. Peter und Santa Maria in Rom eine Fensterverglasung auf. Zu einer breiteren Verwendung kommt es mit der aufkommenden Gotik im 12. Jahrhundert.

Zylinderstreckverfahren I…

Mondglasproduktion im 18. Jhd. Die Tafel stammt aus der Encyclopédie. Der Arbeiter links trägt Holz zu Befeuerung; mittig wird ein Glastropfen entnommen oder das Werkstück aufgeheizt; rechts im Vordergrund wird ein Glastropfen durch marbeln vorgeformt; im Hintergrund wird eine Scheibe ausgeschleudert

Bei dem Mondglasverfahren, das 1330 in Rouen belegt ist, wird ein Glastropfen mit der Glasmacherpfeife zu einer Kugel vorgeblasen. Diese wurde von der Pfeife gesprengt und mit einem Tropfen flüssigen Glases an der gegenüberliegenden Seite an einem Metallstab befestigt. Zur weiteren Verarbeitung wurde die Kugel wieder auf Temperatur gebracht. Bei ca. 1000 °C war das Glas weich genug, um mittels Zentrifugalkraft in Tellerform geschleudert zu werden: Die Kugel öffnete sich um das Loch, an dem vorher die Pfeife befestigt war. Durch diese Technik wurden Glasplatten von ca. 1,20 m Durchmesser erzeugt. Anschließend wurde der äußere Rand zu Rechtecken geschnitten. Diese fanden Verwendung als z. B. Kirchenglas mit Bleieinfassungen. Das Mittelstück mit der Anschlussstelle des Schleuderstabs heißt Butze und wurde für Butzenscheiben von 10–15 cm Durchmesser verwendet.

Das Walzglasverfahren wurde zum ersten Mal 1688 in Saint Gobain, der Keimzelle des heutigen gleichnamigen Weltkonzerns, dokumentiert. Geschmolzenes Glas wird auf den Walztisch gegossen, verteilt und schließlich gewalzt. Im Gegensatz zu den vorher genannten Verfahren wurde hier eine gleichmäßige Dicke erreicht. Auch waren erstmals Scheibengrößen von 40 Zoll × 60 Zoll möglich, was für die Produktion von Spiegeln genutzt wurde. Probleme bereitet jedoch die ungleichmäßige Oberfläche. Fensterglas dieses Herstellungsverfahrens ist oft blind und Spiegelglas nur durch aufwändiges kaltes Polieren zu erzielen.

Zylinderstreckverfahren II…

Industrialisierung und Automatisierung

Wichtige Ereignisse in der Entwicklung der Glasindustrie

Allgemein
  • 1847 Einführung von Formen aus Metall in der Hohlglasproduktion (Joseph Magoun)
  • 1856 Erster Glasofen mit Regenerativfeuerung durch Friedrich Siemens
  • 1867 Kontinuierlicher Wannenofen von Friedrich Siemens
  • 1882 Ernst Abbe gründet mit Otto Schott in Jena Glaswerke für optische Spezialgläser

Flachglas

Um 1900 entwickelte der Amerikaner John H. Lubbers ein Verfahren zur Zylinderfertigung. Diese konnten einen Durchmesser von 80 cm erreichen und waren bis zu 8 m (!) hoch. Der Zylinder wurde aufgeschnitten und geplättet. Das Verfahren war jedoch sehr umständlich, insbesondere das Umlegen der Zylinder in die Horizontale bereitete Schwierigkeiten.

Ein weitreichendes Patent sollte 1904 von Emile Fourcault folgen. Das nach ihm benannte Fourcault-Verfahren zur Ziehglasherstellung. Das Glas wird dabei kontinuierlich entnommen. Eine Schamottedüse liegt in der flüssigen Schmelze. Mit dem Hochziehen durch einen Kühlkanal auf ca. 8 m Höhe kann es oben zugeschnitten werden. Die Glasdicke ist durch die Ziehgeschwindigkeit einstellbar. Es kam ab 1913 zum Einsatz und bedeutete eine große Verbesserung.

Ein darauf aufbauendes Verfahren ließ der Amerikaner Irving Wightman Colburn 1905 patentieren. Das Glasband wurde zur besseren Handhabe in einen horizontalen Kühlkanal umgeleitet. Mit einer eigenen Fabrik wurde bis 1912 versucht, das Verfahren zu beherrschen, blieb aber letztlich erfolglos, so dass Insolvenz angemeldet wurde. Das Patent ging an die Toledo Glass Company. 1917 kam das nunmehr so genannte Libbeys-Owens-Verfahren zur industriellen Anwendung. Die Vorteile gegenüber dem Fourcault-Verfahren lagen in der einfacheren Kühlung. Hingegen konnten bei jenem mehrere Ziehmaschinen an einer Glasschmelzwanne arbeiten. Da der Kühlofen in der Länge beliebig lang sein konnte, erreichte dieses Verfahren etwa die doppelte Produktionsgeschwindigkeit. In der Folgezeit existierten beide Verfahren parallel.

1928 verbesserte die Plate Glass Company die Vorteile der Verfahren von Fourcault und Colburn; sie erzielte mit dem Pittsburg-Verfahren dadurch eine deutliche Steigerung der Produktionsgeschwindigkeit.

1919 gelang Max Bicheroux der entscheidende Schritt bei der Gussglasherstellung. Die flüssige Glasmasse wurde dabei zwischen gekühlten Walzen zu einem Glasband geformt, im noch erwärmten Zustand zu Tafeln geschnitten und in Öfen abgekühlt. Mit diesem Verfahren erreichte man die heute noch üblichen Scheibengrößen von 3 m × 6 m.

1923 Pilkington und Ford: kontinuierliches Walzglas für Automobilglas.

1902 Patent von William E. Heal auf das Floatverfahren, das auf eine Idee von Henry Bessemer zurückgeht.

1959 Die Firma Pilkington bewältigt als erste die technischen Probleme der Floatglasfertigung. Dieses Prinzip revolutionierte die Flachglasfertigung und wurde in den 1970er Jahren allgemeiner Standard.

Hohlglas

Im frühen 19. Jahrhundert wurden neue mechanische Hilfsmittel zum Blasen der Gläser benutzt. Es wurden Formen benutzt, die ein Relief als Negativ schon aufwiesen. Durch den Blasdruck wird das Glas in die Hohlräume gedrückt und das Werkstück bekommt seine Form. Allerdings ist die Lungenkraft des Glasmachers nicht ausreichend hoch für tiefere Reliefs, so dass mechanische Hilfsmittel eingeführt wurden: Durch Luftpumpen wird genügend Druck erzielt.

Eine weitere Neuerung in der Mitte des 19. Jahrhunderts war die Einführung von Metallformen. Erstmals 1847 ersetzten die von Joseph Magoun entwickelten Formen die alten aus Holz, was deren Haltbarkeit beträchtlich erhöhte.

Die ersten halbautomatische Flaschenblasmaschine wurde 1859 von den Briten Alexander Mein und Howard M. Ashley in Pittsburg entwickelt. Doch noch immer waren manuelle Arbeitsschritte vonnöten.

Ein Meilenstein war die 1903 von Michael Joseph Owens eingeführte Owens-Maschine als erste vollautomatische Glasmaschine überhaupt. In einem in der Schmelze eingetauchten Rohr wird ein Vakuum erzeugt und so die problematische Tropfengröße exakt dosiert. Der Arm schwenkt zurück und drückt den Tropfen in die Form. Mit der Umkehrung des Vakuums in Pressluft wird der Tropfen in die Metallform geblasen und das Werkstück erhält seine endgültige Gestalt. Mit dieser Technik war es möglich, die zu dieser Zeit enorme Menge von vier Flaschen pro Minute zu produzieren. Diese Technik nennt man Saug-Blas-Verfahren.

Trotz dieser Errungenschaft blieben maschinell geblasene Flaschen noch viele Jahre schwerer als mundgeblasene. Um die Glasmacher zu übertreffen, mussten die Maschinen noch sehr viel genauer arbeiten. So ist auch zu erklären, dass die verschiedenen Produktionsverfahren noch lange parallel betrieben wurden.

Auch wurden wesentliche Verbesserungen der Tropfenentnahme realisiert. Der Tropfenspeiser von Karl E. Pfeiffer im Jahre 1911 ließ den Glastropfen nicht mehr von oben aus der Schmelze entnehmen, sondern die Schmelze tropfte durch eine Öffnung im Feeder (Speiser). Durch die genauer mögliche Dosierung der Glasmenge konnten gleichmäßigere Flaschen gefertigt werden.

1924 wird die IS-Maschine von den Namensgebern Ingle und Smith patentiert, die erste industrielle Anwendung folgt wenige Jahre später. Diese Maschine, die die Vorteile des Tropfen-Verfahrens erst richtig nutzt, arbeitet nach dem Blas-Blas-Verfahren. Ein Tropfen wird in eine Metallform geleitet und vorgeblasen. Der vorgeformte Tropfen wird in eine zweite Form geschwenkt, in der das Werkstück fertig geblasen wird.

Erste Anwendungen des neuen Verfahrens folgten wenige Jahre später. Die erste Maschine von 1927 hatte vier Stationen: Ein Feeder beschickte eine Maschine und diese konnte parallel vier Flaschen fertigen. Das Prinzip des Blas-Blas-Verfahrens ist auch heute noch in der Massenfabrikation gültig.

Rohrglas

Glasrohre wurden bis ins 19. Jahrhundert ebenfalls (mundgeblasen) ausschließlich diskontinuierlich aus einer Charge oder einem Glasposten hergestellt. 1912 entwickelte E. Danner (Libbey Glass Company) in den USA das erste kontinuierliche Röhrenziehverfahren; 1918 erhielt er dafür ein Patent.

Beim Danner-Verfahren fließt eine Glasschmelze als Band auf einen schräg nach unten geneigten, rotierenden keramischen Hohlzylinder auf, die sogenannte Dannerpfeife. Nach Zuführung von Druckluft über das Innere der Pfeife gelingt das Abziehen des sich bildenden Glasrohres in Richtung der Pfeifenachse. Ziehgeschwindigkeit sowie Höhe des Drucks der zugeführten Luft bestimmen hierbei die Rohrdimension.

1929 wurde in Frankreich von L. Sanches-Vello ein vertikales Ziehverfahren ausgearbeitet; hier kann das Rohr zunächst senkrecht nach unten in einem temperaturgeregelten Schacht abgezogen und dann in die Horizontale umgelenkt werden.

Garten – Gartengeräte & -produkte individuell gestalten

Garten
aus Wikipedia, der freien Enzyklopädie

Ein Garten ist ein abgegrenztes Stück Land, in dem Pflanzen unter mehr oder minder intensiver Pflege mit Hilfe von Gartengeräten angebaut werden (Gartenwirtschaft/Gartenbau).

Gärten werden nicht nur angelegt, um einen direkten Ertrag zu ernten (Nutzgarten), sondern auch um einem künstlerischen, spirituellen, religiösen, therapeutischen Zweck bzw. der Freizeitgestaltung und Erholung zu dienen (Ziergarten), (Kleingarten).

Inhaltsverzeichnis

  • 1 Etymologie des Wortes Garten
  • 2 Gartentypen
  • 3 Bepflanzung
  • 4 Geschichte des Gartenbaus
    • 4.1 Gartenbau im Alten Ägypten
      • 4.1.1 Belegte Pflanzen
    • 4.2 Gartenbau in Asien
    • 4.3 Anfänge des Gartenbaus im Nahen Osten
    • 4.4 Gartenbau im frühen Griechenland
    • 4.5 Anfänge des Gartenbaus bei den Römern
    • 4.6 Anfänge des Gartenbaus in der nachrömischen Zeit
    • 4.7 Gartenbau in den Niederlanden
    • 4.8 Der Viktorianische Garten in England
  • 5 Der Garten als Ökosystem

Etymologie des Wortes Garten

Der deutsche Begriff Garten leitet sich etymologisch von Gerte (indogermanisch gher und später ghortos) ab. Gemeint sind Weiden-, Haselnussruten oder andere, die früher – ineinander verflochten – den Garten umfriedeten. Das Wort gerd, gard bezeichnet über gotisch garde „Gehege“ ursprünglich „das (mit Gerten) umzäunte Gelände“, erhalten in der Form Gatter für „Zaun“, während die von einem lebenden Zaun umstandenen Fläche im Wortfeld Hag, Hecke zu finden ist.

Der dem Wort in der heutigen Form zugrundeliegende Begriff ist „umfriedetes Land zum Zweck des Anbaus von Pflanzen“. Der Garten stand unter besonderem rechtlichem Schutz (Gartenfrieden). Toponyme auf -gard/t(en), -gad(en) leiten sich aus diesem Kontext ab, vermischen sich aber mit dem althochdeutschen Wort gadam „Gadem“, „Raum“, „Gemach“, „Scheune“ (Berchtesgaden).

Gartentypen

Neben der heute oftmals anzutreffenden Form eines Mischgartens, der, wie der Name sagt, viele Aspekte in sich vereint, unterscheidet man in Europa auch je nach schwerpunktmäßiger Anlage den Haus- bzw. Nutzgarten, den Gemüse-, Obst- (früher auch Baumgarten genannt) und Kräutergarten, den Kleingarten, den Naturgarten, den botanischen Garten, den Versuchsgarten uvm.

Gärten im Sinne von Ziergärten können öffentlich oder privat sein, eingefriedet oder zugänglich.

Ein großer Garten, der nicht zu Ertragszwecken, sondern als ästhetisches Objekt angelegt und unterhalten wird, ist ein Park, auch wenn sich im Namen solcher Anlagen das Wort „Garten“ erhalten hat (zum Beispiel beim Englischen Garten).

Bepflanzung

In einem Garten verwendet man Nutzpflanzen (Obst und Gemüse, Küchen- und Gewürzkräuter, Heilpflanzen) und Zierpflanzen. Dazu gehören:

  • Sommerblumen – Einjährige oder Zweijährige – blühen im ersten oder zweiten Jahr nach der Aussaat;
  • Stauden – Mehrjährige – ziehen im Winter ein und treiben aus Wurzel, Zwiebel oder Knolle wieder neu aus;
  • Gehölze – Halbsträucher, Sträucher, Bäume ( Laubgehölze und Koniferen) – sommergrüne, wintergrüne, immergrüne;
  • Kübelpflanzen – frostempfindliche Pflanzen, die im Haus oder Wintergarten überwintern müssen.

Geschichte des Gartenbaus

Gartenbau im Alten Ägypten

Gartenbau ist schon in der vorgeschichtlichen Zeit getrieben worden, das beweisen die Felsengräber von Beni Hassan (Ägypten), in denen Abbildungen von Gärten gefunden wurden.

Belegte Pflanzen

Für die vordynastische Zeit lassen sich verschiedene Kulturpflanzen nachweisen:

  • die Sykomore, auch Maulbeerfeige, die seit der Zeit des Alten Reiches um 2600 v. Chr. auch als Liebesgöttin Hathor verehrt wurde und deren Holz die alten Ägypter für den Bau von Möbeln, Schiffen, Särgen und Statuen verwandten.
  • die Dumpalme (Hyphaene thebaica L.) und die Dattelpalme (Phoenix dactylifera L.)., die sich beide anhand von Mattenresten, Fallen und Fächern für diese Zeit nachweisen lassen
  • der Wein, den man für die Zeit der ersten Dynastie um 2950 v. Chr. in Abydos und aus der dritten Dynastie rund dreihundert Jahre später in Sakkara belegen kann.

Wandmalereien in vielen Gräbern dieser Zeit demonstrieren die Mühsal, mit der der Wüste die Gärten abgerungen wurden. In den Gräbern der Pyramiden wurden Samen folgender Gartenpflanzen gefunden: Akazien (Acacia nilotica), Lauch (Allium porrum), Balsamodendron, Balanites aegyptiaca, Zichorien (Cichorium Intybus), Dill, Sellerie, Koriander, Bockshornklee, Citrullus edulis, Gurke (Cucumis sativus), Erdmandel (Cyperus esculentus), Echte Feige (Ficus carica), Hyphaene thebaica, Juniperus phoenicea, Mimusops ummeligella sativa, Granatapfel (Punica granatum), Ricinus communis, Raphanus sativus, Sapindus.

Gartenbau in Asien

Auch die alten Inder hatten gut bewässerte und ganz regelmäßig angelegte Gärten, in denen für jede Pflanzenart meist eine besondere Abteilung bestimmt war. Anders in China, wo der Land- und Gartenbau, ihretwegen auch die Wasserwirtschaft, sich stets in der höchsten denkbaren Blüte befand. Die Gärten Japans ähneln den chinesischen. Derselbe Gedanke liegt ihnen zu Grunde, nur ahmen jene die Natur noch treuer nach und suchen große Landschaften im Kleinen nachzubilden. In Japan werden Gärten nach den Prinzipien des Zen-Buddhismus oder des Feng Shui angelegt, die bestimmten Mustern entsprechen. Dabei wird vor allem auf Ausgewogenheit der Elemente geachtet.

Anfänge des Gartenbaus im Nahen Osten

Von den Gärten der Israeliten Araber, Syrer und Assyrer, kennen wir diejenigen des Königs Salomo in Jerusalem und der Königin Semiramis in Babylon.

König Salomo (1015) war ein großer Gartenfreund und zog, vielleicht zum Unterricht, Gewächse aller Art „von der Zeder bis auf den Ysop, der aus der Mauer wuchs“; in einem zweiten Garten zog man allerhand meist aus Indien eingeführte Gewürzkräuter.

Kyros II. (559–529), der Gründer des großen persischen Reichs und des persischen Gartens, beförderte den Obstbau durch weise Gesetze und durch Schulgärten bei den Anstalten, in denen die Kinder der Großen seines Reichs erzogen wurden. Von Obstarten dieser Länder wurden und werden heute noch genannt: Weintrauben, Quitte, Pfirsich, Lotospflaume (Diospyrus Lotus), Pflaumen und Birnen.

Gartenbau im frühen Griechenland

In Griechenland waren die Ureinwohner dem Waldkultus ergeben; spätere Einwanderer vom Norden wie von Ägypten und Kleinasien führten zahlreiche Nutzpflanzen ein, lichteten aber die Wälder und mussten bald für künstliche Bewässerung des Landes sorgten. Aus Homers Odyssee ist ein zusammenhängender, regelmäßig eingeteilter Obst- (und wohl auch Gemüse-) Garten bekannt. Homers Odyssee stellt in allen ihren umfangreichen Beschreibungen nie dar, dass Obst gegessen wird, und doch machen für den Dichter Birnen, Granatäpfel, Äpfel, Feigen, Oliven und natürlich Weintrauben einen wohlgeplanten Obstgarten aus, ein Garten, der über lange Zeit im Jahr Früchte hervorbringen würde:

Außer dem Hof ist ein großer Garten nahe der Hoftür
An vier Morgen, auf allen Seiten vom Zaun umzogen.
Große Bäume stehen darin in üppigem Wachstum,
Apfelbäume mit glänzenden Früchten, Granaten und Birnen
Und auch süße Feigen und frische, grüne Oliven.
Denen verdirbt nie Frucht, noch fehlt sie winters wie sommers
Während des ganzen Jahres, sondern der stetige Westhauch
Treibt die einen hervor und läßt die anderen reifen.
Birne auf Birne reift da heran und Apfel auf Apfel,
aber auch Traube auf Traube und ebenso Feige auf Feige.
(Homer, Odyssee 7,112)

In Griechenlands klassischer Zeit gingen Feld- und Gartenbau zurück, man lebte meist in den Städten, wo einige wenige regelmäßige Anpflanzungen den Einwohnern als Erholungsorte dienten, oder wo Epikur seine Schüler um sich versammelte, weshalb seine Philosophie Kepos (Garten) genannt wurde. Die Gemüse des alten Griechenland waren ziemlich diejenigen unsrer Tage. Aber die Halbinsel mit ihrer Blüte erlag im Anfang unsrer Zeitrechnung fremden Eroberern, und erst in neuerer Zeit sprach man wieder vom Garten auch in Griechenland, unter anderen von dem Schlossgarten, welchen Königin Amalie in Athen anlegen ließ, und der ein Wunderwerk von Schönheit sein soll; in neuester Zeit hat zwar, nach Professor Landerer, der Garten eine immer größere, allgemeine Ausdehnung gewonnen, dem aber der harte Winter 1879/80 ganz bedeutend geschadet hat.

Anfänge des Gartenbaus bei den Römern

In Italien haben die alten Römer die Nutzgärten (Gemüse- und Obstgärten) vom Lustgarten getrennt.

Anfänge des Gartenbaus in der nachrömischen Zeit

Nach dem Fall des römischen Reichs wurden in Italien die unverteidigten Besitzungen der Edlen geplündert und verwüstet, das Land wurde nur für den notwendigsten Bedarf, vor allem für die Ernährung bebaut. Dann entstanden Klöster, das eine oft neben dem anderen, und während der Herrschaft der Päpste im 8.–12. Jahrhundert waren die Mönche fast die einzigen, die sich mit Acker- und Gartenbau beschäftigten; Reiche und Mächtige schenkten ihnen, um sich Verzeihung der Sünden zu erwerben, große Flächen Landes mit Hörigen und belohnten ihre Tätigkeit als tüchtige Landwirte und Gärtner. Der Friede äußerte sich auch durch Einführung vieler fremden Pflanzen aus dem Orient, namentlich durch reiche Venezianer und Genuesen.

Frankreichs Gartenbau kennt im Anfang seiner Geschichte nur das rein Nützliche, erhebt sich nur langsam zur Beachtung der Blumen und erreicht erst sehr spät das ästhetisch Schöne; jedes angenehme und nützliche Erzeugnis des Land- und Gartenbaues stammt aus der Fremde, von den Phönikern, Griechen, Karthagern, Römern und Sarazenen. Karl der Große (768–814) beförderte Acker-, Obst- und Weinbau auf jede Weise, er liebte die Gärten und erteilte seinen Gärtnern gern Verhaltungsbefehle. Er stand in freundschaftlichem Verhältnis zu dem abbassidischen Kalifen Harun ar-Raschid (gest. 809), durch den er die besten Gemüse und Früchte erhalten haben soll.

Der botanische Gartenbau in Europa kam erst dauerhaft im 16. Jahrhundert, nach der Entdeckung Mexikos in Schwung, und ging daher zunächst von Spanien aus.

Gaspar de Gabriel, ein reicher toskanischer Edelmann, gründete 1525 den ersten botanischen Garten, dem bald der von Cornaro in Venedig, der von Simonetti in Mailand, von Pinetta in Neapel und andere folgten.

1545 wurde vom Senat in Venedig die Anlage eines öffentlichen botanischen Gartens in Padua bewilligt, Papst Pius V. ließ den in Bologna einrichten, der Großherzog von Toskana den in Florenz, und bald darauf hatte beinahe jede bedeutende Stadt in Italien einen botanischen Garten.

Auch in Frankreich wurden 1597 botanische Gärten angelegt.

Gartenbau in den Niederlanden

Die Niederlande sind bekannt für Blumenzucht (Blumenzwiebeln), Baumschulen sowie der Obst- und Samenzucht für den Handel. Der niederländische Gartenstil war der Vorläufer der barocken Gärten im 17. und 18. Jahrhundert und beeinflusste auch die französische Gartenarchitektur. Herrenhäuser wurden häufig mit Hecken, Blumen, Laubengängen und Kanälen umgeben angelegt. Die flache Landschaft begünstigte die regelmäßige Anlage von Beeten.

Der Viktorianische Garten in England

Im 19. Jahrhundert, in dem die bürgerliche Sphäre die Kunst und Kultur dominierte, liebte man die seltenen Pflanzen. Die Gärtner wurden zu Hobby-Botanikern und legten Themengärten, etwa mit australischen, südamerikanischen oder asiatischen Pflanzen an, die Pflanzenjäger in aller Welt sammelten. Das Sammeln von seltenen Spezies wurde wichtiger als die künstlerische Gestaltung der Landschaft. So hielten z. B. die Rhododendren, Kamelien und Azaleenarten Einzug in die Gärten. Besonders beliebt waren auch Topiarien, d. h. in Form geschnittene Büsche und Bäume. Im Garten von Levens Hall vermeint man sich in einem überdimensionalen Spielzeugland zu befinden, so sehr dominieren hier die würfelförmig, kegelig und kugelig zugeschnittenen Hecken. In den Stadtgärten pflegte man besonders die nun wieder beliebten Blumenrabatten, die teppichförmig dalagen und in denen die Blumen bunte Ornamente bildeten.

Einen natürlichen Gegensatz zu diesen sehr gezierten Gärten bilden die Gärten der Women Gardeners wie Gertrude Jekyll oder Elizabeth Sitwell, die sich an der ungezähmten Pracht und Einfachheit von Bauerngärten orientieren.

Der Garten als Ökosystem

Gärten können für die Biodiversität eine wichtige Bedeutung haben. Ihre vielfältigen Strukturen wie Hecken, Büsche, Zäune, Asthaufen oder Einzelbäume bieten Insekten, Vögeln und Amphibien Unterschlupf und Jagdrevier. Dabei spielt jedoch die Art des Gartens eine große Rolle. Herausgeputzte Privatgärten wirken sich nachteilig auf die Artenvielfalt aus.

Zu diesem Schluss kam auch die nationale Hummelnest-Zählung 2007 in England, bei der 700 Freiwillige im eigenen Garten sämtliche Nester abgesucht haben. Dabei stellte sich heraus, dass Gärten mit vielen unordentlichen Zonen in der Regel mehr Hummeln aufweisen. Damit hängt es direkt vom ästhetische Empfinden des Besitzers ab, ob ein Garten seiner Funktion als ökologische Nische gerecht werden kann oder nicht.

Zumindest auf dem Papier hat sich das Wissen um den Nutzen von Strukturreichtum niedergeschlagen. Ein Beispiel sind die Richtlinien für Schrebergarten-Besitzer in Zürich. Dort heißt es explizit: “Das Anlegen und Pflegen von naturnahen Lebensräumen für Tiere und Pflanzen (z.B. Wiesen, standortheimische Sträucher, Wildhecken, Obstbäume, Feucht- und Trockenbiotope, Kleinstrukturen wie Trockenmauern, Lesesteinhaufen u.a.) ist erwünscht.”

Doch offenbar kommt es immer wieder zum Konflikt zwischen Ästhetik und den Bedürfnissen des Ökosystems. So zeigte eine Studie aus den USA, dass die Bereitschaft zum naturnahen Gartenbau stark vom Aussehen des Gartens des Nachbarn abhängt. Wenn dieser einen sauber geschnittenen Rasen führt, dann fühlt man sich selbst dazu verpflichtet, das ebenfalls zu tun.

Eine Studie aus der Schweiz zeigt indessen, dass artenarme und langweilige Gärten generell als ästhetisch nicht ansprechend bewertet werden. Die Zustimmung steigt jedoch, umso farbenfroher, artenreicher und wilder ihr Erscheinungsbild ist. Doch irgendwann kippt die Bewertung wieder. Gänzlich chaotische Gärten findet niemand schön. Das Ökosystem Garten hat in der heutigen Zeit offenbar gute Chancen als wertvollen Lebensraum für Pflanzen und Tiere anerkannt zu werden.

USB- Artikel individuell gestalbar

Universal Serial Bus
aus Wikipedia, der freien Enzyklopädie

Der Universal Serial Bus (USB) ist ein serielles Bussystem zur Verbindung eines Computers mit externen Geräten. Mit USB ausgestattete Geräte oder Speichermedien können im laufenden Betrieb miteinander verbunden (Hot-Plugging) und angeschlossene Geräte sowie deren Eigenschaften automatisch erkannt werden.

Inhaltsverzeichnis

  • 1 Überblick
  • 2 Einsatzgebiete von USB
  • 3 Geschichte und Entwicklung
  • 4 Übertragungstechnik/Spezifikation
    • 4.1 Die verschiedenen Host-Controller
    • 4.2 Einstellungen und Schnittstellen
    • 4.3 Geräteklassen
    • 4.4 Übertragungsmodi
      • 4.4.1 Endpunkte
      • 4.4.2 Isochroner Transfer
      • 4.4.3 Interrupt-Transfer
      • 4.4.4 Bulk-Transfer
      • 4.4.5 Control-Transfer
    • 4.5 USB On-the-go
    • 4.6 Wireless USB
    • 4.7 Datenraten
    • 4.8 USB 3.0
  • 5 Hardware
    • 5.1 USB-Stecker und -Kabel
      • 5.1.1 USB-Stecker
        • 5.1.1.1 Micro- und Mini-USB
      • 5.1.2 USB-Kabel
        • 5.1.2.1 Farbkodierung und Pinouts
    • 5.2 USB-Hubs
      • 5.2.1 Allgemeines
      • 5.2.2 USB 2.0 und Hubs
      • 5.2.3 USB 3.0 und Hubs
    • 5.3 USB-Card-Bus
  • 6 Software-Architektur
    • 6.1 USB-Gerätetreiber
    • 6.2 USB-Bustreiber
    • 6.3 USB-Host-Controller-Treiber
    • 6.4 Unterstützung in Betriebssystemen
  • 7 Kurioses

Überblick

USB ist ein serieller Bus, d. h. die einzelnen Bits eines Datenpaketes werden nacheinander übertragen. Die Datenübertragung erfolgt symmetrisch über zwei verdrillte Leitungen, die eine überträgt das Datensignal, die andere das dazu invertierte Signal. Der Signalempfänger bildet die Differenzspannung beider Signale; der Spannungsunterschied zwischen 1- und 0-Pegeln ist dadurch doppelt so groß, eingestrahlte Störungen werden weitgehend eliminiert. Das erhöht die Übertragungssicherheit, unterdrückt Gleichtaktstörungen und verbessert damit die elektromagnetische Verträglichkeit. Zwei weitere Leitungen dienen zur Stromversorgung der angeschlossenen Geräte. Durch die Verwendung von nur vier Adern in einer Leitung können diese dünner und billiger ausgeführt werden als bei parallelen Schnittstellen. Eine hohe Datenübertragungsrate ist mit relativ geringem Aufwand zu erreichen, da nicht mehrere Signale mit identischem elektrischem und zeitlichem Verhalten übertragen werden müssen.

Die Bus-Spezifikation sieht einen zentralen Host-Controller (Master) vor, der die Koordination der angeschlossenen Peripherie-Geräte (den sog. Slave-Clients) übernimmt. Daran können theoretisch bis zu 127 verschiedene Geräte angeschlossen werden. An einem USB-Port kann immer nur ein USB-Gerät angeschlossen werden. Sollen an einem Host mehrere Geräte angeschlossen werden, muss deshalb ein Verteiler (Hub) für deren Kopplung sorgen. Durch den Einsatz von Hubs entstehen Baumstrukturen, die alle im Host-Controller enden.

Einsatzgebiete von USB

USB eignet sich für viele Geräte wie Massenspeicher (etwa Festplatte, Diskette, DVD-Laufwerk), Drucker, Scanner, Webcams, Maus, Tastatur, aber auch Dongles und sogar Grafikkarten und Monitore.[1] Einige Geräte, zum Beispiel USB-Speichersticks, sind überhaupt erst mit USB entstanden. USB kann für Geräte mit geringem Stromverbrauch wie Mäuse, Telefone, Tastaturen, aber auch einige CIS-Scanner oder manche 2,5-Zoll-Festplatten die Stromversorgung übernehmen.

USB soll viele ältere externe PC-Schnittstellen ersetzen, sowohl serielle (RS-232, PS/2-Schnittstelle für Tastatur und Maus, Apple Desktop Bus), parallele (Centronics-Schnittstelle) als auch analoge (Gameport). Die alten Schnittstellen wurden dabei teilweise noch sehr lange an Mainboards und Notebooks angeboten, selbst als entsprechende Geräte schon nicht mehr im Handel erhältlich waren. Im industriellen Bereich wird noch oft RS-232 über ältere PCs oder Adapterkarten eingesetzt, da entsprechende USB-Adapter nicht echtzeitfähig sind und Peripheriegeräte in diesem Umfeld wesentlich langlebiger sind. Mittlerweile hat USB auch PCMCIA-Slots und externe SCSI-Schnittstellen weitgehend verdrängt.

Im Vergleich zu den früheren Lösungen bietet USB deutlich höhere Datenübertragungsraten. Die Daten werden jedoch in Paketen übertragen, für manche zeitkritische Anwendungen ist es deshalb weniger geeignet – etwa bei mit nur wenigen Bytes belegten Paketen, die die Übertragungsrate senken, oder wenn das Sammeln von Bytes zum Füllen eines Pakets die Übertragung verzögern würde.

Seit der Einführung der USB-2.0-Spezifikation sind relativ hohe Datenübertragungsraten möglich, dadurch ist USB zum Anschluss weiterer Gerätearten wie Festplatten, TV-Schnittstellen und Foto-Kameras geeignet. Bei externen Massenspeicherlösungen steht USB heute in Konkurrenz zu FireWire und eSATA.

Geschichte und Entwicklung

Der universelle serielle Bus (USB 1.0) wurde vom Hersteller Intel entwickelt und 1996 im Markt eingeführt. Er war zum Anschluss von Peripheriegeräten an PCs konzipiert und sollte die Nachfolge einer ganzen Reihe damals verwendeter PC-Schnittstellen antreten und diese vereinheitlichen. Deshalb war die USB-Spezifikation nicht auf Tastatur und Maus begrenzt, sondern schloss auch andere Peripheriegeräte wie Drucker und Scanner mit ein. Massenspeicher – wie etwa Festplatten – wurden zwar von USB 1.0 unterstützt, wegen der maximalen Datenrate von 12 Mbit/s waren sie dafür aber nur sehr eingeschränkt zu gebrauchen.

Als einer der ersten Chipsätze unterstützte 1996 der ursprünglich für den Pentium Pro entwickelte und später für den Pentium II verwendete 440FX das USB-Protokoll, was vor Einführung der ATX-Mainboards jedoch kaum bis gar nicht beworben wurde. Die Hauptursache dafür dürfte zum einen in der mangelhaften beziehungsweise fehlenden Unterstützung von USB durch die damals verbreiteten Betriebssysteme Windows 95 und Windows NT 4.0 gelegen haben, zum anderen waren in der Anfangszeit auch kaum USB-Geräte verfügbar. Dieser zähe Start brachte ihm den Spitznamen Useless Serial Bus ein.

Ende 1998 folgte die überarbeitete Spezifikation USB 1.1, die in erster Linie Fehler und Unklarheiten in der 1.0-Spezifikation behob und den Interrupt Out Transfer hinzufügte. Die Geschwindigkeit erhöhte sich nicht. USB 1.x war deshalb keine Konkurrenz zu Apples FireWire-Standard (IEEE 1394), der von Anfang an (1995) eine Datenrate von bis zu 400 Mbit/s hatte und im April 2003 auf bis zu 800 Mbit/s beschleunigt wurde. Dennoch setzte Apple die Schnittstelle in der Revision USB 1.1 mit der Entwicklung des iMac ein. Mit diesem beginnend, ersetzte Apple damit den hauseigenen ADB.

Im Jahr 2000 wurde USB 2.0 spezifiziert, was vor allem eine weitere Datenrate von 480 Mbit/s hinzufügte und so den Anschluss von Festplatten oder Videogeräten ermöglichte. Produkte dafür erschienen jedoch erst ab 2002 am Markt. Zu beachten ist, dass pro Anschluss nur maximal 500 mA (High Power) oder 100 mA (Low Power) als Stromversorgung zugesichert werden müssen.

Externe 3,5″-Festplatten lassen sich nicht anschließen, da diese 12 V als Betriebsspannung benötigen. Die Stromaufnahme ist, da USB nur 5 V zur Verfügung stellt, irrelevant. Externe 2,5″-Festplatten haben Anlaufströme von 600 mA bis 1100 mA, im Betrieb begnügen sie sich mit 250 mA bis 400 mA (Stand: 2010). Die kurzzeitige Überlastung des USB-Ports wird von fast allen Geräten geduldet, nur wenige Geräte (meist Festplattenrecorder) haben mit besonders stromhungrigen Festplatten Probleme. Die früher häufig zu findenden Doppel-USB-Anschlüsse (die laut USB-Spezifikation nicht zulässig sind) oder zusätzliche Betriebsspannungseingänge an Festplatten sind verschwunden (Stand: 2010). Externe 1,8″-Festplatten liegen mit Anlaufströme um die 400 mA und Betriebsströmen um die 150 mA weit innerhalb der USB-Spezifikation und bereiten nie Probleme.

2008 wurden die neuen Spezifikationen für USB 3.0 SuperSpeed vorgestellt, die Datentransferraten von mindestens 4,8 Gbit/s erreichen. Mit dieser Spezifikation werden auch neue Stecker, Kabel und Buchsen eingeführt, die größtenteils mit den alten kompatibel sein sollen. Mit USB 3.0 wird auch die Stromversorgung auf 900 mA erhöht, was die Versorgung von 2,5-Zoll-Festplatten absichert.

Übertragungstechnik/Spezifikation

Die verschiedenen Host-Controller

Die USB-Controller-Chips in den PCs halten sich an einen von drei etablierten Standards. Diese unterscheiden sich in ihrer Leistungsfähigkeit und der Implementierung von bestimmten Funktionen. Für ein USB-Gerät sind die verwendeten Controller (fast) vollständig transparent, allerdings ist es für den Benutzer des PC mitunter wichtig, feststellen zu können, welche Art Chip der Rechner verwendet, um den korrekten Treiber auswählen zu können.

  • Universal Host Controller Interface (UHCI) wurde im November 1995 von Intel spezifiziert. Die aktuelle Version des Dokuments trägt die Revisionsnummer 1.1. UHCI-Chips bieten Unterstützung für USB-Geräte mit 1,5 oder 12 Mbit/s Datenrate im Low- oder Full-Speed-Modus. Sie werden ausschließlich von den Herstellern Intel und VIA Technologies gebaut.
  • Open Host Controller Interface (OHCI) ist eine Spezifikation, die gemeinsam von Compaq, Microsoft und National Semiconductor entwickelt wurde. Version 1.0 des Standards wurde im Dezember 1995 veröffentlicht, die aktuelle Fassung trägt die Versionsnummer 1.0a und stammt von September 1999. Ein OHCI-Controller hat prinzipiell die gleichen Fähigkeiten wie seine UHCI-Pendants, erledigt aber mehr Aufgaben in Hardware und ist dadurch marginal schneller als ein UHCI-Controller. Dieser Unterschied bewegt sich meistens in Bereichen, die gerade noch messbar sind, daher kann man ihn in der Benutzung vernachlässigen; Geräteentwickler müssen es jedoch berücksichtigen. Bei USB-Controllern auf Hauptplatinen mit Chipsätzen, die nicht von Intel oder VIA stammen, und auf USB-PCI-Steckkarten mit Nicht-VIA-Chipsätzen handelt es sich mit hoher Wahrscheinlichkeit um OHCI-Controller.
  • Das Enhanced Host Controller Interface (EHCI) stellt USB-2.0-Funktionen bereit. Es wickelt dabei nur die Übertragungen im High-Speed-Modus (480 Mbit/s) ab. Wenn man USB-1.1-Geräte an einen Port mit EHCI-Chip steckt, reicht der EHCI-Controller den Datenverkehr an einen hinter ihm liegenden UHCI- oder OHCI-Controller weiter (alle Controller sind typischerweise auf demselben Chip). Wenn kein EHCI-Treiber verfügbar ist, werden High-Speed-Geräte ebenfalls an den USB-1.1-Controller durchgereicht und arbeiten dann soweit möglich mit langsamerer Geschwindigkeit.

Einstellungen und Schnittstellen

Intern adressiert der USB-Controller die angeschlossenen Geräte mit einer sieben Bit langen Kennung, wodurch sich die 127 maximal anschließbaren Geräte ergeben. Die Adresse 0 wird automatisch von Geräten belegt, die ein Reset-Signal erhalten. Wenn an einem oder mehreren Ports neue Geräte detektiert werden, so schaltet der Host-Controller einen dieser Ports ein, sendet dem dort angeschlossenen Gerät einen Reset und versucht dann, das Gerät zu identifizieren. Danach teilt er ihm eine eindeutige Adresse mit. Da immer nur ein Port mit noch nicht konfiguriertem Gerät aktiviert wird, kommt es zu keinen Adresskollisionen.

Der Host-Controller fragt meist zuerst nach einem Device-Deskriptor, der unter anderem die Hersteller- und Produkt-ID enthält. Mit weiteren Deskriptoren teilt das Gerät mit, welche alternativen Konfigurationen es besitzt, in die es von seinem Gerätetreiber geschaltet werden kann. Bei einer Webcam könnten diese Alternativen etwa darin bestehen, ob die Kamera eingeschaltet ist oder ob nur das Mikrofon läuft. Für den Controller ist dabei relevant, dass die unterschiedlichen Konfigurationen auch einen unterschiedlichen Strombedarf mit sich bringen. Ohne besondere Freigabe durch das Betriebssystem darf ein Gerät nicht mehr als 100 mA Strom benötigen.

Innerhalb einer Konfiguration kann das Gerät verschiedene Schnittstellen definieren, die jeweils über einen oder mehrere Endpunkte verfügen. Unterschiedlicher Bedarf an reservierter Datenrate wird über sogenannte Alternate Settings signalisiert. Ein Beispiel dafür ist eine Kamera (etwa eine Webcam), die Bilder in zwei verschiedenen Auflösungen senden kann. Das Alternate Setting 0 wird aktiviert, wenn ein Gerät keine Daten übertragen möchte und somit pausiert.

Geräteklassen

Damit nicht für jedes Gerät ein eigener Treiber nötig ist, definiert der USB-Standard verschiedene Geräteklassen, die sich durch generische Treiber steuern lassen. Auf diese Weise sind USB-Tastaturen, -Mäuse, USB-Massenspeicher, Kommunikations- („Communications Device Class“, kurz: CDC) und andere Geräte mit ihren grundlegenden Funktionen sofort verwendbar, ohne dass zuvor die Installation eines spezifischen Treibers notwendig ist. Herstellerspezifische Erweiterungen (die dann einen eigenen Treiber erfordern) sind möglich. Die Information, zu welchen Geräteklassen sich ein Gerät zählt, kann im Device-Deskriptor (wenn das Gerät nur einer Klasse angehört) oder in einem Interface-Deskriptor (bei Geräten, die zu mehreren Klassen gehören) untergebracht werden.

USB-Geräteklassen
Klasse↓ Verwendung↓ Beschreibung↓ Beispiele↓
00h Gerät Composite Device Die Klasse wird auf Ebene der Interface-Deskriptoren definiert
01h Interface Audio Lautsprecher, Mikrofon, Soundkarte, MIDI
02h Beides Kommunikation und CDC-Steuerung Netzwerkkarte, Modem, Adapter für serielle Schnittstelle
03h Interface HID Tastatur, Maus, Joystick etc.
05h Interface PID Physikalisches Feedback, etwa für Force-Feedback-Joysticks
06h Interface Bilder Digitalkamera
07h Interface Drucker Laserdrucker, Tintenstrahldrucker
08h Interface Massenspeicher USB-Stick, Memory-Card-Lesegerät, MP3-Player
09h Gerät USB-Hub Full-Speed Hub, High-Speed Hub
0Ah Interface CDC-Daten diese Klasse wird zusammen mit Klasse 02h verwendet
0Bh Interface Chipkarte Chipkarten-Lesegerät
0Dh Interface Content Security Finger-Print-Reader
0Eh Interface Video Webcam
0Fh Interface Personal Healthcare Pulsuhr
DCh Beides Diagnosegerät USB-Compliance-Testgerät
E0h Interface kabelloser Controller Wi-Fi-Adapter, Bluetooth-Adapter
EFh Beides Diverses ActiveSync-Gerät
FEh Interface softwarespezifisch IrDA-Brücke
FFh Beides herstellerspezifisch der Hersteller liefert einen Treiber mit

Übertragungsmodi

Der USB bietet den angeschlossenen Geräten verschiedene Übertragungsmodi an, die diese für jeden einzelnen Endpunkt festlegen können.

Endpunkte

USB-Geräte verfügen über eine Anzahl von durchnummerierten „Endpunkten“, gewissermaßen Unteradressen des Gerätes. Die Endpunkte sind in den Geräten hardwareseitig vorhanden und werden von der USB SIE (Serial Interface Engine) bedient. Über diese Endpunkte können voneinander unabhängige Datenströme laufen. Geräte mit mehreren getrennten Funktionen (z. B. Webcams, die Video und Audio übertragen) haben mehrere Endpunkte. Die Übertragungen von und zu den Endpunkten erfolgen meist unidirektional, für bidirektionale Übertragungen ist deshalb ein IN- und ein OUT-Endpunkt erforderlich (IN und OUT beziehen sich jeweils auf die Sicht des Hostcontrollers). Eine Ausnahme davon sind Endpunkte, die den sogenannten Control Transfer Mode verwenden.

In jedem USB-Gerät muss ein Endpunkt mit Adresse 0 vorhanden sein, über den die Erkennung und Konfiguration des Gerätes läuft, darüber hinaus kann er auch noch weitere Funktionen übernehmen. Endpunkt 0 verwendet immer den Control Transfer Mode.

Ein USB-Gerät darf maximal 31 Endpunkte haben: Den Control-Endpunkt (der eigentlich zwei Endpunkte zusammenfasst) und je 15 In- und 15 Out-Endpunkte. Low-Speed-Geräte sind auf Endpunkt 0 plus maximal zwei weitere Endpunkte im Interrupt Transfer Mode mit maximal 8 Bytes pro Transfer beschränkt.

Isochroner Transfer

Der isochrone Transfer ist für Daten geeignet, die eine garantierte Datenrate benötigen. Diese Transferart steht für Full-Speed- und High-Speed-Geräte zur Verfügung. Definiert das sogenannte Alternate Setting einen Endpunkt mit isochronem Transfer, so reserviert der Host-Controller-Treiber die erforderliche Datenrate. Steht diese Datenrate nicht zur Verfügung, so schlägt die Aktivierung des genannten Alternate Settings fehl, und es kann mit diesem Gerät keine isochrone Kommunikation aufgebaut werden.

Die erforderliche Datenrate ergibt sich aus dem Produkt des Abfrageintervalls und der Größe des Datenpuffers. Full-Speed-Geräte können jede ms bis zu 1023 Bytes je isochronem Endpunkt übertragen (1023 kbyte/s), High-Speed-Geräte können bis zu drei Übertragungen je Micro-Frame (125 µs) mit bis zu 1024 kbyte/s ausführen (24 Mbyte/s). Stehen in einem Gerät mehrere isochrone Endpunkte zur Verfügung, erhöht sich die Datenrate entsprechend. Die Übertragung ist mit einer Prüfnummer (CRC16) gesichert, wird aber bei einem Übertragungsfehler durch die Hardware nicht wiederholt. Der Empfänger kann erkennen, ob die Daten korrekt übertragen wurden. Isochrone Übertragungen werden zum Beispiel von der USB-Audio-Class benutzt, die bei externen USB-Soundkarten Verwendung findet.

Interrupt-Transfer

Interrupt-Transfers dienen zur Übertragung von kleinen Datenmengen, die zu nicht genau bestimmbaren Zeitpunkten verfügbar sind. Im Endpoint Descriptor teilt das Gerät mit, in welchen maximalen Zeitabständen es nach neuen Daten gefragt werden möchte. Das kleinstmögliche Abfrageintervall beträgt bei Low-Speed 10 ms, bei Full-Speed 1 ms und bei High-Speed bis zu drei Abfragen in 125 µs. Bei Low-Speed können pro Abfrage bis zu 8 Byte, bei Full-Speed bis zu 64 Byte und bei High-Speed bis zu 1024 Byte übertragen werden. Daraus ergeben sich maximale Datenraten von 800 byte/s bei Low-Speed, 64 kbyte/s bei Full-Speed und bis zu 24 Mbyte/s bei High-Speed. Die Daten sind mit einer Prüfnummer (CRC16) gesichert und werden bei Übertragungsfehlern bis zu dreimal durch die Hardware wiederholt. Geräte der HID-Klasse (Human Interface Device), zum Beispiel Tastaturen, Mäuse und Joysticks, übertragen die Daten über den Interrupt-Transfer.

Bulk-Transfer

Bulk-Transfers sind für große Datenmengen gedacht, die jedoch nicht zeitkritisch sind. Diese Transfers sind niedrig priorisiert und werden vom Controller durchgeführt, wenn alle isochronen und Interrupt-Transfers abgeschlossen sind und noch Datenrate übrig ist. Bulk-Transfers sind durch eine Prüfnummer (CRC16) gesichert und werden durch die Hardware bis zu dreimal wiederholt. Low-Speed-Geräte können diese Transferart nicht benutzen. Full-Speed-Geräte benutzen Puffer-Größen von 8, 16, 32 oder 64 Bytes. High-Speed-Geräte verwenden immer einen 512 Byte großen Puffer.

Control-Transfer

Control-Transfers sind eine besondere Art von Datentransfers, die einen Endpunkt erfordern, der sowohl In- als auch Out-Operationen durchführen kann. Control-Transfers werden generell in beide Richtungen bestätigt, so dass Sender und Empfänger immer sicher sein können, dass die Daten auch angekommen sind. Daher wird der Endpunkt 0 im Control-Transfer-Modus verwendet. Control-Transfers sind zum Beispiel nach dem Detektieren des USB-Geräts und zum Austausch der ersten Kommunikation elementar wichtig.

USB On-the-go

Durch USB On-the-go (OTG) können entsprechend ausgerüstete Geräte miteinander kommunizieren, indem eines der beiden eine eingeschränkte Host-Funktionalität übernimmt. Dadurch kann auf einen Computer, der die Host-Funktion übernimmt, verzichtet werden. Mögliche Einsatzgebiete sind beispielsweise die Verbindung von Digitalkamera und Drucker oder der Austausch von Musikdateien zwischen zwei MP3-Spielern.

Gekennzeichnet werden USB-OTG-Produkte durch das USB-Logo mit zusätzlichem grünem Pfeil auf der Unterseite und weißem „On-The-Go“-Schriftzug. Die USB-OTG-Spezifikation wurde am 18. Dezember 2001 verabschiedet.

OTG-Geräte sind zum Beispiel die seit November 2007 erhältlichen Nokia 6500c und Nokia N810, aber auch einige Image Tanks.

Wireless USB

Momentan besetzen zwei Initiativen den Begriff „Wireless USB“. Die ältere der beiden wurde von dem Unternehmen Cypress initiiert, mittlerweile ist Atmel als zweiter Chiphersteller auf den Zug aufgesprungen. Das „Cypress-WirelessUSB“-System ist eigentlich kein drahtloses USB, sondern eine Technik, um drahtlose Endgeräte zu bauen, die dann über einen am USB angeschlossenen Empfänger/Sender (Transceiver) mit dem Computer verbunden sind. Dazu wird eine Übertragungstechnik im lizenzfreien 2,4-GHz-Band benutzt, die Datenrate beträgt bis zu 62,5 kbit/s (neuere Chips von Cypress erreichen 1 Mbit/s) und ist damit für Eingabegeräte völlig ausreichend, für andere Anwendungen aber oft zu knapp bemessen.

Das zweite Wireless-USB-Projekt wird von der USB-IF vorangetrieben und ist wesentlich anspruchsvoller, neben Intel ist auch NEC dabei, entsprechende Chips zu entwickeln. Ziel ist es, eine Technik zu schaffen, mit der die vollen 480 Mbit/s des High-Speed-Übertragungsmodus drahtlos übertragen werden können. Dabei ist eine kurze Reichweite unter 10 m vorgesehen; die Übertragung soll auf einer Ultrabreitband-Technik basieren. Am 16. Januar 2008 gab die Bundesnetzagentur für die Ultrabreitband-Technik Frequenzbereiche frei. Der dabei für USB vorgesehene Bereich von 6 bis 8,5 GHz ist jedoch nicht so breit wie von USB-IF spezifiziert, so dass Geräte aus anderen Ländern eventuell in Deutschland nicht verwendet werden dürfen.

Datenraten

USB erlaubt es einem Gerät, Daten mit 1,5 Mbit/s, 12 Mbit/s oder mit 480 Mbit/s zu übertragen. Diese Raten basieren auf dem Systemtakt der jeweiligen USB-Geschwindigkeit und stellen die physikalische Datenübertragungsrate dar. Die Toleranzen werden für „USB 2.0“-Geräte und für die älteren USB-1.0-/1.1-Geräte getrennt behandelt. Der tatsächliche Datendurchsatz liegt – durch Protokoll-Overhead – darunter. Im USB-Standard ist eine maximale theoretische Datenlast bei High-Speed unter idealen Bedingungen von 49.152.000 Byte/s (Isochronous Mode) beziehungsweise 53.248.000 Byte/s (Bulk-Mode) angegeben. Dazu kommt die Verwaltung der Geräte, so dass bei aktuellen Systemen eine nutzbare Datenrate in der Größenordnung von 320 Mbit/s (40 MB/s) bleibt. Bei älteren Systemen wurde diese durch eine unzureichende Anbindung des USB-Chips an den Systembus zusätzlich reduziert.

Geschwindigkeit Toleranz USB 3.0 Toleranz USB 2.0 Toleranz USB 1.0/1.1
Low-Speed, 1,5 Mbit/s (187,5 KB/s) ± 0,75 kbit/s ± 22,5 kbit/s
Full-Speed, 12 Mbit/s (1,5 MB/s) ± 6 kbit/s ± 30 kbit/s
High-Speed, 480 Mbit/s (60 MB/s) ± 240 kbit/s
Super-Speed, 5 Gbit/s (625 MB/s)

Wird die Schnittstelle eines Geräts mit „USB 2.0“ angegeben, heißt das nicht unbedingt, dass dieses Gerät auch die hohe Datenrate von 480 Mbit/s anbietet. Standpunkt der Anbieter ist dabei, dass ein USB-2.0-kompatibles Gerät grundsätzlich jede der drei Geschwindigkeiten benutzen kann und die 2.0-Kompatibilität in erster Linie bedeutet, dass die neueste Fassung der Spezifikation eingehalten wird. 480 Mbit/s dürfen also nur erwartet werden, wenn ein Gerät mit dem Logo „Certified USB Hi-Speed“ ausgezeichnet ist.

Die Kommunikation bei USB wird vom Hostcontroller gesteuert, der heutzutage in der Regel auf dem Motherboard eines Computers verbaut ist. Nur dieser kann Daten von einem Gerät lesen oder zu einem Gerät senden. Ein Gerät darf nur dann Daten zum Hostcontroller senden, wenn es von diesem abgefragt wird. Bei zeitkritischen Datenströmen, wie etwa bei Mausbewegungen, muss der Hostcontroller von sich aus häufig genug beim Gerät anfragen (Polling), ob es Daten senden will, um ein Ruckeln zu verhindern.

Eine direkte Kommunikation zwischen USB-Geräten ist gemäß dem USB-Standard eigentlich nicht möglich; das wurde erst durch die Erweiterung USB On-the-go eingeschränkt ermöglicht (die Geräte können hier wahlweise Host oder Endgerät sein, ein echter bidirektionaler Austausch ist aber trotzdem nicht möglich). Der FireWire-Standard, der für ähnliche Einsatzzwecke wie USB geschaffen wurde und mit diesem in Konkurrenz steht, bietet im Gegensatz dazu die Möglichkeit einer Peer-to-Peer-Kommunikation zwischen Geräten, ohne dass die Steuerung durch einen Host erforderlich ist. Somit ist mit FireWire etwa der Aufbau eines Netzwerks möglich.

USB 3.0

Im November 2008 stellte das USB Implementers Forum, dem unter anderem die Unternehmen HP, Microsoft und Intel angehören, die Spezifikation für USB 3.0 vor. Es sollen Datenraten von 5 GBit/s (625 MB/s) erreicht werden (SuperSpeed-Modus).

Die höheren Datenraten werden durch eine Übertragungstechnik ähnlich PCI-Express beziehungsweise Serial ATA ermöglicht, die allerdings zusätzlich zum bisherigen Datenleitungspaar (D+/D-) im Kabel noch zwei weitere Aderpaare erfordert (plus einen weiteren Masseanschluss). Da in den Steckern somit fünf weitere Kontakte erforderlich sind, wurden mit USB 3.0 neue Steckverbinder und Kabel eingeführt.

zusätzliche Pins bei USB 3.0
Name Beschreibung
SSTX+ Datenübertragung vom Host zum Gerät
SSTX− mit SSTX+ verdrillt
GND Masse
SSRX+ Datenübertragung vom Gerät zum Host
SSRX− mit SSRX+ verdrillt

Diese neuen Verbinder vom Typ A sind mit den bisherigen abwärtskompatibel. Bisherige USB-Geräte lassen sich auch weiterhin mit USB 3.0, neue 3.0-Geräte auch an alten 2.0- beziehungsweise 1.0/1.1-Hosts betreiben. Eine Ausnahme stellen B-, Mini-B-, Micro-B- und Mini-A-Verbinder dar. Durch die hier notwendigen Anbauten lassen sich zwar alte Stecker in neuen Buchsen, nicht jedoch neue Stecker in alten Buchsen verwenden. Dafür sind dann Adapter erforderlich.

Mit dem Linux-Kernel Version 2.6.31 ist Linux das erste Betriebssystem, das USB 3.0 unterstützt.

Weitere Besonderheiten:

  • Die bei den bisherigen USB-Standards übliche Reihumabfrage der Geräte (Polling) entfällt. Durch solche Abfragen können Geräte in verschiedene Stromsparmodi (U0 bis U3) geschaltet werden. Möglich wird das durch zusätzliche Befehle.
  • Statt 100 stehen nun 150 mA Stromstärke pro Gerät zur Verfügung. Auf Anforderung können statt bisher 500 nun 900 mA bereitgestellt werden.
  • zu Hubs siehe USB 3.0 und Hubs
  • Ältere Treiber sollen weiterverwendbar bleiben. Allerdings werden sich Treiberupdates unter Umständen lohnen, etwa um die neuen Stromsparmodi zu nutzen.

Für einen späteren Zeitpunkt ist auch eine Erweiterung des Standards mit Lichtwellenleitern geplant. Erste Geräte, die USB 3.0 nutzen, sind bereits erhältlich. Anders als noch bei USB 2.0 dürfen sich Geräte nur „USB-3.0-kompatibel“ nennen, wenn sie tatsächlich die schnellstmögliche Geschwindigkeit (hier Super-Speed-Modus) anbieten.

Hardware

USB-Stecker und -Kabel

USB-Stecker

Die Stecker eines USB-Kabels sind verpolungs- und vertauschungssicher gestaltet.

In Richtung des Hostcontrollers (Upstream) werden flache Stecker (Typ A „DIN IEC 61076-3-107“) verwendet. Zum angeschlossenen Gerät hin (Downstream) werden die Kabel entweder fix montiert oder über annähernd quadratische Steckverbinder (Typ B „DIN IEC 61076-3-108“) angeschlossen (vereinzelt und nicht standardkonform auch mit Typ A-Steckverbindern). Entsprechend der USB 1.0–2.0 Standards besitzen USB Typ A- und Typ B-Verbinder vier Leitungen plus Schirm. Beide Steckverbinder sollen in einer der drei Farben grau, „natur“ (elfenbeinfarben/weiß) oder schwarz ausgeführt werden. Mit USB 3.0 kommen neue Varianten der Typ A- und Typ B-Verbinder auf den Markt (siehe unten).

Seit einiger Zeit sind auch Stecker und Buchsen vom Typ A und B mit Rändelschrauben erhältlich, die ein Herausrutschen verhindern. Allerdings muss das empfangene Gerät dies auch unterstützen.

Verschiedene Hersteller brachten mechanisch inkompatible Ausführungen von USB-Verbindern heraus, die sich jedoch elektrisch nicht von USB 1.x oder 2.0 unterschieden. So etwa waren einige IBM Thinkpads mit einem sog. UltraPort ausgestattet, APC führt USB an ihren USVs über 10-polige Modular-Buchsen (10P10C/RJ50), die Microsoft Xbox benutzt ebenfalls proprietäre USB-Verbinder oder Apple führt USB beim iPod Shuffle über einen Klinkenstecker, der gleichzeitig als Audioverbinder dient. Diese nicht standardisierten Varianten haben jedoch bisher keine weitere Verbreitung erlangt.

Für den industriellen Einsatz gibt es mehrere nicht vom USB-Konsortium standardisierte USB-5-V(olt)-, USB-12V-, USB-19-V- und USB-24-V-Varianten mit deutlich höheren Strombelastbarkeiten von bis zu 6 A (3 A pro Kontakt) über insgesamt vier zusätzliche Leitungen, die um 1999 im Rahmen der PoweredUSB- und PlusPower-Spezifikationen von Firmen wie IBM, Microsoft, NCR und Berg/FCI definiert wurden und zum Teil lizenzpflichtig sind. Diese Varianten werden insbesondere bei POS-Anwendungen von verschiedenen Herstellern eingesetzt. Die Steckverbinder führen dabei neben dem USB-Typ-A-Stecker eine unabhängige hochstromfähige vierpolige Spannungsversorgung. Diese Stecker sind nicht rechteckig, sondern mehr quadratisch (wie zwei Stecker in einem gemeinsamen Gehäuse, der USB-Teil selbst entspricht mechanisch und elektrisch unverändert USB Typ A). Mittels einer mechanischen Kodierung wird verhindert, dass zum Beispiel USB-12-V-Stecker versehentlich in USB-24-V-Buchsen gesteckt werden können. Eine mechanische Arretierung der Stecker in den Buchsen ist ebenfalls vorgesehen. Zusätzlich wird für diese Stecker eine Farbkodierung empfohlen, naturfarben (z. T. auch gelb) für 5 V (30 W), blaugrün (Pantone Teal 3262C) für 12 V (72 W), rot (Pantone Red 032C) für 24/25 V (144 W) und seltener violett für 19 V. Kommt keine Farbkodierung zum Einsatz, sollen die Stecker für alle Spannungen größer 5 V schwarz ausgeführt werden, wohingegen grau als alternative Farbe für 5 V in Frage kommt. Für die B-Seite ist kein spezieller Stecker definiert, es gibt jedoch verschiedene Empfehlungen, teilweise mit unterschiedlichen HotPlug-Fähigkeiten. Die Bezeichnung für diese industriellen USB-Varianten lautet Retail USB, PoweredUSB, USB PlusPower oder USB +Power.

Micro- und Mini-USB

Insbesondere für Geräte mit geringerem Platzangebot (z. B. digitale Kameras, Mobiltelefone, MP3-Player und andere mobile Geräte) existieren auch verschiedene kompaktere USB-Steckverbinder. Im USB-2.0-Standard verankert sind dabei lediglich fünfpolige Mini- und Micro-Varianten (plus Schirm) (z. T. auf dem Foto in der Mitte abgebildet), die gegenüber den normalen USB-Steckverbindern über einen zusätzlichen ID-Pin verfügen:

Zunächst wurde im Jahr 2000 ein trapezförmiger Mini-B-Steckverbinder für die Downstream-Seite definiert, der in der Farbe Schwarz ausgeführt werden sollte. Bei zukünftigen Geräten sollen Gerätehersteller jedoch auf die Micro-USB-Verbinder (siehe unten) ausweichen. Auch Mini-A- (in weißer Farbe) und Mini-AB-Steckverbinder (in Grau) waren für eine gewisse Zeit Teil des Standards und sollten insbesondere in Verbindung mit USB On-the-Go (OTG) eine Rolle spielen, wurden jedoch im Mai 2007 offiziell zurückgezogen.

Im Januar 2007 wurden mit der Standarderweiterung Micro-USB für USB 2.0 noch kleinere Steckverbinder vorgestellt, die eine besonders kompakte Bauform der Geräte ermöglichen. Die Micro-USB-Spezifikation kann USB On-the-Go (OTG) unterstützen, was Verkabelung und Kommunikation auch ohne PC als Host ermöglicht. Micro-USB-Steckverbinder sollen bei neueren Geräten in naher Zukunft den Mini-Verbinder komplett ersetzen, lediglich der relativ weit verbreitete Mini-B-Verbinder wird derzeit noch geduldet. Die Micro-USB-Verbinder sind elektrisch gleichwertig, mechanisch allerdings nicht steckkompatibel, dafür jedoch dank der im Standard geforderten Edelstahlkrampe deutlich stabiler ausgeführt. Gemäß USB-2.0-Standard gibt es drei Varianten, die genau wie bei Mini-USB allesamt fünfpolig ausgeführt sind: Micro-A (rechteckige Bauform, für die Host-Seite, Farbe Weiß), Micro-AB (rechteckige Bauform, für USB-On-the-Go-Geräte, Farbe Grau) und Micro-B (Trapez-Bauform, für die Geräteseite, Farbe Schwarz). Die Open Mobile Terminal Platform OMTP hat Micro-USB 2007 als Standardverbinder für den Datentransfer und die Energieversorgung von Mobilfunkgeräten übernommen, in China müssen Mobiltelefone seitdem mit dieser Schnittstelle ausgestattet werden, um eine Zulassung zu bekommen. Mit USB 3.0 kommen neue Varianten der Micro-A-, AB- und -B-Steckverbinder auf den Markt (siehe unten).

Daneben gibt es noch eine ganze Reihe proprietärer, das heißt geräteherstellerspezifische Miniaturbauformen der Steckverbinder (siehe auch Bild), die zwar in der Regel elektrisch mit USB 2.0 kompatibel sind, jedoch nur über z. T. schwer erhältliche Adapterkabel mit USB-Komponenten gemäß dem USB-Standard verbunden werden können. Fälschlicherweise werden jedoch auch diese Steckverbinder häufig als „Mini“-USB bezeichnet, was immer wieder zu Missverständnissen führt und vermieden werden sollte. Nicht zuletzt deshalb soll der Micro-USB-Standard hier den Wildwuchs beenden. Verbreitet sind unterschiedlichste Ausführungen mit vier Pins (insbesondere Varianten von Mitsumi, Aiptek, Hirose) sowie eine große Zahl von Varianten mit acht Pins (darunter mehrere inkompatible Varianten, die sich bei Digitalkameras in begrenztem Rahmen auch über Herstellergrenzen hinweg verbreitet haben), elf Pins (ExtUSB für HTC-Mobiltelefone; kompatibel zu Mini-USB), zwölf Pins (für verschiedene Olympus-Digitalkameras) und 14 Pins (zwei Varianten für verschiedene Fuji-Finepix-Digitalkameras und als Nokias Pop-Port für manche Mobiltelefone), die auch noch andere, nicht-USB-spezifische Signale im gleichen Konnektor vereinen.

Im Rahmen des im Jahr 2008 verabschiedeten USB-3.0-Standards wurden weitere sechs Steckverbindertypen mit zusätzlichen Kontakten definiert:

Diese unterteilen sich in je drei Steckverbinder, die als weitestgehend rückwärtskompatible Erweiterungen der bisherigen Typ A- und Typ B-Steckverbinder angesehen werden können (genannt: USB 3.0 Standard-A, USB 3.0 Standard-B und USB 3.0 Powered-B) sowie drei kleinere Verbinder, die sich an die bisherigen Micro-USB-Verbinder anlehnen (genannt: USB 3.0 Micro-A, USB 3.0 Micro-AB und USB 3.0 Micro-B). Zur eindeutigen Kennzeichnung werden die bisherigen Steckverbinder nun als USB 2.0 Standard-A, USB 2.0 Standard-B, USB 2.0 Micro-A, USB 2.0 Micro-AB und USB 2.0 Micro-B bezeichnet. Zur besseren Unterscheidung sollen die USB-3.0-Standard-A-Verbinder in der Farbe Blau (Pantone 300C) ausgeführt und gegebenenfalls mit einem doppelten S-Symbol gekennzeichnet werden.

Die folgenden Steckkombinationen werden dabei mechanisch unterstützt:
Aufnahmetyp Steckertyp
USB 3.0 Standard-A USB 3.0 Standard-A, USB 2.0 Standard-A
USB 2.0 Standard-A USB 2.0 Standard-A, USB 3.0 Standard-A
USB 3.0 Powered-B USB 3.0 Powered-B, USB 3.0 Standard-B, USB 2.0 Standard-B
USB 3.0 Standard-B USB 3.0 Standard-B, USB 2.0 Standard-B
USB 2.0 Standard-B USB 2.0 Standard-B
(USB 2.0 Mini-AB) (USB 2.0 Mini-A, USB 2.0 Mini-B)
USB 2.0 Mini-B USB 2.0 Mini-B
USB 3.0 Micro-AB USB 3.0 Micro-A, USB 3.0 Micro-B, USB 2.0 Micro-A, USB 2.0 Micro-B
USB 2.0 Micro-AB USB 2.0 Micro-A, USB 2.0 Micro-B
USB 3.0 Micro-B USB 3.0 Micro-B, USB 2.0 Micro-B
USB 2.0 Micro-B USB 2.0 Micro-B
Die Steckertypen wurden für folgende Anzahl Steckzyklen spezifiziert:
Anschlusstyp Anzahl der Steckzyklen
USB (USB 1.0–3.0) min. 500x, später min. 1500x (USB 3.0 Standard Class: min. 1500x, High Durability Class: min. 5000x)
Mini-USB (USB 2.0) min. 5000x
Micro-USB (USB 2.0–3.0) min. 10000x
eSATA (zum Vergleich) min. 5000x
Firewire/IEEE 1394 (zum Vergleich) min. 1500x
Stecker Steckerabmessungen passende Buchsen erlaubte Kabeltypen
A Typ A A → Stecker B
→ Stecker Mini-B
→ Stecker Micro-B
B Typ B B → Stecker A
Mini-B Typ Mini-B Mini-B → Stecker A
Micro-A Typ Micro-A Micro-AB → Stecker Micro-B
→ Buchse A (als Adapter)
Micro-B Typ Micro-B Micro-B
Micro-AB
→ Stecker A
→ Stecker Micro-A

Verbreitet haben sich weiterhin 1×4-, 1×5- und 2×2-polige Varianten von Stiftleisten im Rastermaß 2,54 Millimeter auf PC-Mainboards, ebenso wie Doppel-USB-Verbinder mit 2×4 oder 2×5 Polen im Rastermaß 2,54 mm. Gab es zunächst mehrere zueinander inkompatible Belegungsvarianten, hat sich im Zuge neuerer Mainboard-Spezifikationen von Intel inzwischen eine bestimmte 2×5-polige Belegung etabliert, die auch mit uDOC-Flashmodulen kompatibel ist.

USB-Kabel

In einem USB-Kabel werden vier Adern benötigt. Zwei Adern übertragen dabei die Daten, die anderen beiden versorgen das angeschlossene Gerät mit einer Spannung von 5 V. Der USB-Spezifikation entsprechende Geräte dürfen bis zu 100 mA oder 500 mA aus dem Bus beziehen, abhängig davon, wie viel der Port liefern kann, an den sie angeschlossen werden. Geräte mit einer Leistung von bis zu 2,5 W können also über den Bus versorgt werden. Je nach Kabellänge muss der Querschnitt der beiden Stromversorgungsadern angepasst sein, um den zulässigen Spannungsabfall einzuhalten; auch daher sind Verlängerungsleitungen nicht standardgemäß.

Die Kabel müssen je nach Geschwindigkeit unterschiedlich abgeschirmt werden. Kabel, die lediglich der Spezifikation low speed entsprechen, dürfen über keinen B-Stecker verfügen, sondern müssen fix am Gerät montiert sein oder einen herstellerspezifischen Stecker verwenden. Sie sind weniger stark abgeschirmt, kommen ohne verdrillte Adern aus und sind dadurch flexibler als Full/High-Speed Kabel. Sie sind daher gut für zum Beispiel Mäuse und Tastaturen geeignet. Die geringe Abschirmung des Kabels kann zu Problemen bei Geräten mit höheren Geschwindigkeiten führen.

Die Längen von Full-/High-Speed- und Low-Speed-Kabeln vom Hub zum Gerät sind auf fünf beziehungsweise drei Meter begrenzt. Längere Strecken kann man überwinden, indem USB-Hubs zwischengeschaltet werden. Sogenannte USB-Repeaterkabel entsprechen in ihren Funktionen einem Bus-Powered Hub (s. u.) mit einem einzigen Downstream-Port und einem fest angeschlossenen Kabel am Upstream-Port. Da die elektrischen Auswirkungen dieser Kabel im USB-Bus denen eines Bus-Powered-USB-Hubs mit fünf Meter Kabel entsprechen, sollten bei ihrer Verwendung zusätzlich die Beschränkungen beim Verschachteln von USB-Hubs beachtet werden.

USB arbeitet mit einem Wellenwiderstand von 90 Ω, direkte Verbindungskabel sollten daher auch in diesem Wellenwiderstandswert ausgeführt sein.

Für die Überbrückung von Längen über 30 Metern werden USB-Line-Extender angeboten. Diese bestehen aus zwei Komponenten: Einem Base-Modul, das an den Computer angeschlossen wird, und einem Remote-Modul für den Anschluss des USB-Gerätes. Zur Distanzüberbrückung zwischen diesen beiden Komponenten werden meist Ethernetkabel oder Lichtleiter eingesetzt. Da sich diese Line-Extender jedoch immer auf bestimmte, nicht vom Standard vorgeschriebene Verhaltensdetails der angeschlossenen Geräte verlassen und zudem bei langen Kabelstrecken die Signallaufzeit zu Protokollverletzungen führt, ist der Einsatz dieser Geräte oft mit Problemen verbunden.

Eine andere Möglichkeit, USB-Geräte weiter entfernt vom Rechner anzuschließen, sind Lösungen, die einen „remote host“ verwenden, also einen USB-Hostcontroller, der außerhalb des PCs liegt. Dabei geschieht die Kommunikation zwischen PC und Hostcontroller zum Beispiel über Ethernet. Das Ethernet ersetzt dabei den lokalen Bus, an dem sonst der Hostcontroller angeschlossen wäre. Auf dem PC muss also nur ein entsprechender Treiber installiert werden, der die Kommunikation mit dem Hostcontroller übernimmt. Alle Treiber für die USB-Geräte erkennen dann keinen Unterschied zu einem lokal angeschlossenen Gerät. Ein Beispiel für ein solches Gerät ist der USB-Server von Keyspan.

Farbkodierung und Pinouts

Der USB-Standard legt neben der Belegung der Schnittstelle auch die Namen der einzelnen Stecker-Pins und die Aderfarbe fest. Die Nummer eines Stecker-Pins kann in den oben angeführten Schemazeichnungen abgelesen werden.

Standardstecker
Pin Name Farbe Beschreibung
1 VCC Rot +5 V
2 D- Weiß Data −
3 D+ Grün Data +
4 GND Schwarz Masse
Ministecker/Microstecker
Pin Name Farbe Beschreibung
1 VCC Rot +5 V
2 D- Weiß Data −
3 D+ Grün Data +
4 ID keine erlaubt Unterscheidung vonMicro-A- und Micro-B-Stecker

Typ A: Masse

Typ B: nicht verbunden

5 GND Schwarz Masse

USB-Hubs

Allgemeines

Ein USB-Hub ist ein USB-Gerät, das das USB-Signal an mehrere Ports verteilt. Handelsüblich sind USB-Hubs mit bis zu sieben Downstream-Ports.

Hubs können ihren Strom aus dem Bus selbst beziehen (als Bus-Powered oder passiver Hub bezeichnet) oder über eine eigene Stromversorgung verfügen (als Self-Powered oder aktiver Hub bezeichnet). Die meisten Self-Powered-Hubs werden über ein Steckernetzteil mit Strom versorgt. Manche Monitore haben auch einen USB-Hub eingebaut, der über die Stromversorgung des Monitors mitgespeist wird. Self-Powered-Hubs haben den Vorteil, dass jedes an sie angeschlossene Gerät bis zu 500 mA Strom beziehen kann. Bei Bus-Powered-Hubs dürfen der Hub und alle an ihn angeschlossenen Geräte gemeinsam maximal 500 mA beziehen. Hybride Self- und Bus-Powered-Hubs sind möglich – der Hub ist dann Self-Powered, wenn ein Netzteil an ihn angeschlossen ist, und ansonsten Bus-Powered. Manchmal werden Bus-Powered-Hubs auch als „passiv“ und Self-Powered-Hubs als „aktiv“ bezeichnet; technisch ist das jedoch falsch.

Bei der Verschachtelung von Hubs werden die Grenzen durch die maximal 127 möglichen USB-Geräte pro root-hub und durch die Signallaufzeit festgelegt – jeder Hub erhöht die Laufzeit, die Verschachtelungstiefe ist auf maximal fünf (Hub-)Ebenen unterhalb des Hostcontrollers beziehungsweise des Root-Hubs begrenzt. Die maximale Distanz zwischen zwei mit USB verbundenen Geräten liegt wegen der Beschränkung von 5 m pro USB-Kabel bei 30 m – sechs Kabel mit je fünf Meter Länge und dazwischen fünf Hubs.

USB 2.0 und Hubs

Low-, Full- und High-Speed-Geräte lassen sich an einem USB-2.0-Host fast beliebig mischen, ohne dass Geschwindigkeitsnachteile entstehen. Hubs nach dem USB-1.x-Standard können an USB-2.0-Hosts verwendet werden. Geräte, die direkt oder indirekt an einen solchen Hub angeschlossen werden, können allerdings lediglich die Geschwindigkeit Full Speed erreichen, also 12 Mbit/s.

Ein USB-2.0-Host und ein USB-2.0-Hub kommunizieren immer mit High Speed, selbst wenn an dem Hub Low- oder Full-Speed-Geräte angeschlossen sind. Es ist Aufgabe des Hubs, die Daten dieser Geräte in das High-Speed-Protokoll zu verpacken, dazu hat er einen oder mehrere sogenannte „Transaction Translators“ eingebaut. Die Anzahl der Transaction Translators bestimmt, wie viele langsame Geräte an einen USB-2.0-Hub angeschlossen werden können, ohne sich gegenseitig auszubremsen. Wird diese Zahl überschritten, so bricht die Datenrate aller an diesen Host angeschlossenen Low-Speed- und Full-Speed-Geräte auf Geschwindigkeiten deutlich unter denen eines USB-1.1-Hosts ein; der Durchsatz von High-Speed-Geräten am selben Hub bleibt jedoch unbeeinflusst. An der Spezifikation des Stromverbrauchs hat sich bei USB 2.0 im Vergleich zu USB 1.1 nichts geändert.

USB 3.0 und Hubs

Unter USB 3.0 gibt es ein neues Hub-Konzept. Hubs bestehen aus zwei Unter-Hubs. Der eine ist speziell für den neuen Super-Speed-Modus zuständig, der andere für die bisherigen Geschwindigkeitsmodi (Low-Speed, Full-Speed, High-Speed). Erst an den Ports werden beide Teile zusammengeführt. Dezember 2009 hat das Unternehmen VIA die ersten Chips für USB 3.0-Hubs vorgestellt. Der VL810 genannte Chip ist mit allen Geschwindigkeitsmodi kompatibel.

USB-Card-Bus

Der Cardbus-Standard (PC Card Standard 5.0) wurde ursprünglich für PCMCIA-Karten als Datenspeichermedium entwickelt, unterscheidet sich aber vom eigentlichen PCMCIA-Standard durch eine völlig andere Architektur. Es sind auch Steckkarten mit CardBus-Controller am Markt erhältlich, die USB in CardBus umsetzen, so dass USB-Stecker beispielsweise auch an Mobilgeräten ohne integrierte USB-Schnittstelle verwendet werden können – sie sind aber auf den 32 Bit breiten CardBus beschränkt. Ein Nachrüsten bei Computern mit 16-Bit-Bus ist daher nicht möglich.

Es ist anzunehmen, dass CardBus in Zukunft vom neueren und leistungsfähigeren ExpressCard-Standard abgelöst wird. In diesem Standard ist PCI-Express und USB 2.0 zugleich bereits integriert. Der Kartenhersteller kann hier entscheiden, welcher Bus genutzt wird. Entsprechende USB 2.0 Karten für ExpressCard Slots sind verfügbar.

Software-Architektur

Alle USB-Transaktionen werden durch die USB-Software auf dem Host-Computer realisiert. Das geschieht durch den jeweiligen USB-Gerätetreiber, der mit seinem Gerät kommunizieren will. Der USB-Bustreiber ist die Schnittstelle zwischen dem USB-Gerätetreiber und dem USB-Host-Controller.

USB-Gerätetreiber

Die Aufgabe des USB-Gerätetreibers (USB device driver) ist die Erzeugung von Anfragen (Requests) an den USB-Bustreiber. Für eine Anfrage werden I/O-Request-Packets (IRP) verwendet. Diese IRPs initiieren einen Transfer von oder zu USB-Geräten (z. B. Interrupt-Transfer der Tastatur durch Erzeugung eines entsprechenden IRP auslösen).

USB-Bustreiber

Der USB-Bustreiber (USB-Driver) kennt die spezifischen Kommunikationseigenschaften der einzelnen USB-Geräte, zum Beispiel die Datenmenge pro Frame oder Abstände zwischen den periodischen Zugriffen. Er erkennt diese Eigenschaften beim Analysieren der Geräte-Deskriptoren während der Konfigurationsphase. Wenn der USB-Bustreiber ein IRP von einem USB-Gerätetreiber erhält, erzeugt er entsprechend diesem Request einzelne Transaktionen, die innerhalb des Übertragungsrahmens (Frame) von einer Millisekunde ausführbar sind.

USB-Host-Controller-Treiber

Der Universal-Serial-Bus-Host-Controller-Treiber (host controller driver) organisiert die zeitliche Abfolge der einzelnen Transaktionen (Scheduling). Dazu baut er eine Folge von Transaktionslisten auf. Jede dieser Listen besteht aus den noch nicht abgearbeiteten Transaktionen in Richtung eines Gerätes, das am Bus angeschlossen ist. Sie definiert die Reihenfolge der Transaktionen innerhalb des 1-ms-Zeitrahmens. Der USB-Bustreiber kann eine einzelne Anfrage für einen Datentransfer in mehrere Transaktionen zerlegen. Das Scheduling hängt von einer Reihe von Einflussfaktoren wie Transferart, Geräteeigenschaften und Busbelastung ab. Der USB-Host-Controller-Treiber löst die Transaktionen dann über den Root-Hub aus. Dieser setzt der Reihe nach alle Transaktionen um, die in der aktuellen Liste enthalten sind.

Unterstützung in Betriebssystemen

  • Amiga OS3.x unterstützt von Haus aus kein USB. Lediglich mit Hard- und Software anderer Anbieter (Poseidon, Sirion, Anaiis) ist eine Anbindung von USB-1.1- und USB-2.0-Geräten möglich (mit breiter Unterstützung verschiedenster Geräteklassen bei Poseidon). Bei Poseidon kann in Zusammenarbeit mit einer Flash-Rom-Karte sogar von USB-Massenspeichern gebootet werden. Ab Amiga OS4 wird, je nach Hardware, USB 1.1 und 2.0 unterstützt (kein USB 2.0 Highspeed, da der EHCI-Treiber noch fehlt). Unter AmigaOS 4 Classic kann jedoch alternativ auch Poseidon eingesetzt werden.
  • AROS enthält seit August 2009 eine quelloffene Portierung von Poseidon, der die alte Implementierung ersetzt. Es unterstützt OHCI/UHCI (USB 1.1) und EHCI (USB 2.0 Highspeed) sowie die meisten der in Poseidon für AmigaOS vorhandenen Gerätetreiber. Der Stack liegt (teilweise) im Kernel und es kann damit von USB-Massenspeichern gebootet werden.
  • Atari MiNT unterstützt von Haus aus kein USB, es sind jedoch für MiNT verschiedene Treiber in Entwicklung, die Add-on-Karten (wie z. B. EtherNAT, eine Kombination aus USB- und Ethernet Erweiterung für den Atari Falcon) unterstützen.
  • eComStation als Nachfolger von OS/2 bringt ebenfalls Unterstützung für USB 2.0 mit.
  • Der Linux-Kernel unterstützt seit Version 2.2 USB-Controller. Seit der Kernelversion 2.4 sind Treiber für UHCI-, OHCI- und EHCI-Controller sowie Unterstützung für gängige USB-Endgeräte integriert. Die Unterstützung für EHCI-Controller in der Kernelversion 2.4 gilt jedoch als fehleranfällig und läuft erst seit Version 2.6 stabil. Weiterhin existieren sogenannte Gadget-Treiber, damit kann ein Linux-basiertes System, das an einem USB-Host angeschlossen wird, selbst als USB-Gerät erscheinen, zum Beispiel als Massenspeicher, Netzwerkkarte oder serielle Schnittstelle. Seit der Version 2.6.31 wird auch USB 3.0 vom Linux-Kernel unterstützt.
  • Mac OS unterstützt USB 1.1 ab Mac OS 8.1. Mit der Zeit wurde der Umfang an Geräte, die mit Klassentreibern unterstützt werden, deutlich erweitert; seit Mac OS 8.5 werden die meisten üblichen Geräteklassen unterstützt.
  • Mac OS X unterstützt in allen Versionen USB 1.1 und ab Version 10.2.8 auch USB 2.0.
  • Microsoft DOS und kompatible unterstützen USB von Haus aus nicht. USB-Tastaturen und USB-Massenspeicher sind über die Legacy-Emulation vieler moderner PC-BIOSe dennoch verwendbar, aber meist nicht Hotplug-fähig. Auch USB-”Mäuse” funktionieren meist mit für PS/2-Mäuse gedachten Treibern, wenn der Legacy-Mode aktiviert ist. Andere Hersteller bieten Spezialtreiber an, die aber viel konventionellen Speicher belegen und deshalb mit vielen DOS-Programmen nicht kompatibel sind.
  • Microsoft Windows 95 hat ab OEM-ServiceRelease 2.1 eine rudimentäre Unterstützung von USB 1.0, die jedoch als fehleranfällig gilt.
  • Microsoft Windows 98 unterstützt USB 1.0, ab Windows 98 SE auch USB 1.1. USB 2.0 ist nur mit Treibern von Chipsatzherstellern möglich.
  • Microsoft Windows Me unterstützt USB 1.1. USB 2.0 ist nur mit Treibern von Chipsatzherstellern möglich. Im Gegensatz zu Windows 98 und 95 ist nach der Installation gerätespezifischer USB-Treiber kein Neustart erforderlich.
  • Microsoft Windows NT hat keinerlei USB-Unterstützung, von anderen Herstellern sind jedoch Systemerweiterungen dafür erhältlich. Gerätehersteller testen ihre Produkte selten mit derartigen Erweiterungen, deshalb gelten diese Systemerweiterungen nur für Spezialfälle als tauglich.
  • Microsoft Windows 2000 (SP4), Microsoft Windows XP (ab SP1), Microsoft Windows Server 2003, Microsoft Windows Vista, Microsoft Windows Server 2008, Microsoft Windows 7 und Microsoft Windows Server 2008 R2 unterstützen USB 1.1 und USB 2.0. Der USB-Hostcontroller wird allerdings manchmal fehlerhaft erkannt, die meisten Hersteller raten dazu, die Treiber des Chipsatzherstellers zu installieren.
  • MorphOS wird mit dem Poseidon-USB-Stack ausgeliefert mit voller Unterstützung von UHCI, OHCI und EHCI.
  • NetBSD, FreeBSD und OpenBSD unterstützen UHCI, OHCI und EHCI sowie gängige Endgeräte. NetBSD war 1998 das erste freie Betriebssystem mit USB-Unterstützung.
  • OS/2 Warp4 unterstützt erst über den Aufrüstpack Warp 4.51 Convenience Pak 1 (vom Dezember 2000) USB 1.1. Dieser ist kostenpflichtig. Treiber-Aktualisierungen auf USB 2.0 sind ebenfalls verfügbar.
  • Palm OS unterstützt ab Version 3.2 USB als Kommunikationsplattform für HotSync, ab Palm OS 5 können (teilweise mit Zusatzprogrammen) auch Modemfunktionen über USB genutzt werden. Bestimmte PDAs (u. a. Sony Clié) können mit der USB-Schnittstelle einen Massenspeicher emulieren.
  • QNX unterstützt ab der Version 6 UHCI, OHCI und EHCI, mit separat erhältlichen Treibern ist USB-Support auch in QNX4 nachrüstbar. Die mitgelieferten Treiber beschränken sich auf den HID-Bootmode, einige RS232- und Ethernet-Adapter sowie Massenspeicher.

Bei Betriebssystemen ohne USB-Unterstützung kann das BIOS nach Aktivieren von „USB Legacy Support“ (engl. etwa „USB-Unterstützung für Altlasten“) in seinen Einstellungen Abhilfe schaffen, dadurch erscheinen USB-Eingabegeräte wie “Mäuse” und Tastaturen dem Betriebssystem gegenüber als PS/2-Geräte. Je nach BIOS wird meist genau ein USB-Laufwerk (wie USB-Stick, USB-Kartenleser, USB-Festplatte, USB-Floppy) eingebunden. USB-CD/DVD-Laufwerke werden nur dann eingebunden, wenn von ihnen gebootet wird.

Kurioses

Inzwischen sind auch ausgefallene Geräte auf den Markt gekommen, wie beispielsweise USB-Heizplatten, mit denen etwa eine Kaffeetasse über die USB-Schnittstelle warmgehalten werden kann. Eine weitere „Erfindung“ ist ein USB-Raketenwerfer, der auf Befehl kleine Schaumstoffraketen abfeuert. Daneben gibt es auch mehr oder weniger sinnvolle Hardware, wie USB-Lampen für Notebooks, um die Tastatur zu beleuchten, oder USB-Ventilatoren. Des Weiteren ist ein Trend zu beobachten, USB als standardisierte Stromquelle einzusetzen. Namhafte Mobiltelefonhersteller haben sich darauf geeinigt, Micro-USB als Standard-Gerätebuchse für den Ladekontakt einzusetzen.

Der USB-Standard sieht vor, dass sich Geräte zunächst im Low-Power (100 mA) Mode am Bus anmelden und erst mit Erlaubnis des Host in den High-Power Mode (500 mA) umschalten. Die meisten der vorgenannten Spielzeuge verwenden den USB-Anschluss jedoch nur als Stromquelle und verstoßen gegen den USB-Standard, indem sie ohne Erlaubnis des Host mehr als 100 mA Strom beziehen. Das könnte im Extremfall den USB-Anschluss des Hosts beschädigen oder das Energiemanagement des Rechners durcheinanderbringen, was zu instabilem Verhalten führen kann.

Einem der Miterfinder der USB-Schnittstelle, Ajay Bhatt, wurde durch einen Werbespot des Unternehmens Intel ungewohnte Aufmerksamkeit zuteil.

Faltwürfel
Faltwürfel
Zauberwürfel
Zauberwürfel
Tassen
Tassen
Lanyards
Lanyards
Taschen
Taschen
Antistressball
Antistressball
Saisonartikel
Saisonartikel